激光雷达的工作原理

时间:2024-11-06来源:硬十

1、激光雷达的工作原理是什么?

激光雷达是一种以发射激光束来探测目标位置、速度等特征量的雷达系统。这个系统也可以通过扫描发射和接收装置来获取目标物体的三维形状,在不同角度发射和接收激光脉冲,可以构建出物体的完整三维轮廓。激光雷达的工作原理基于光的发射、传播和接收,最终通过测量光脉冲从发射到接收的时间来确定距离,下图是激光雷达测量距离的基本步骤。

2、激光雷达如何分类?激光雷达有很多种不同的分类方法:(1)按照波长分类,可分为905nm、1550nm、940nm等,目前主流的激光雷达主要有905nm和1550nm两种波长。

(2)按照测量方式分类,可以分为ToF激光雷达和FMCW激光雷达

(3)按照扫描方式分类,可以分为机械式、半固态和全固态雷达,雷达正在经历机械式到半固态,再由半固态到全固态的发展过程。

3、激光雷达的应用场景有哪些?

激光雷达在众多领域都发挥着重要作用,并且随着技术的不断发展,其应用范围还在不断扩大。

4、激光雷达选型时有哪些关键参数?

选择激光雷达时需要注意一些关键规格参数


扫地机器人是应用非常广泛的机器人形态,扫地机器人的的关键指标主要包括,清洁能力指标,含清洁吸力、清扫部件设计、续航时间和清扫面积指标、尘盒容量、噪音指标等智能化指标,含建图能力、导航能力、传感器配置、避障能力、自动回充能力等;控制APP易用性指标,含清扫模式设定、定时清扫设定、虚拟墙设置、地图存储等。

1、扫地机器人关键的技术指标有哪些?(1)清洁能力

(2)智能化程度

(3)控制APP易用性指标

机器人需支持手机等终端的APP控制、并有清洁模式选择、定时清扫、虚拟墙设置、地图存储等功能。

2、"聪明"和"不聪明"的扫地机器人的区别是什么?

智能化的扫地机器人需要具备自主导航、路径优、动态避障、自动充电等能力。扫地机器人的智能化差别主要体现在以下几个方面。

(1)扫地机器人导航能力差别


(2)扫地机器人环境感知能力差别

(3)扫地机器人清扫模式能力差别

早期的扫地机器人就属于“不聪明”的模式,模式是“机”清扫,没有规划能力走到哪里扫到哪里,碰到哪里就改变路线。现在智能化的扫地机器人是“聪明”的模式清扫告别了“横冲直撞”的随机式,利用定位导航技术让清扫变得有规划,提高清扫效率,降低机器损耗。1、机器人进入了未知的环境会怎样?
当我们去了一个陌生的环境,为了迅速熟悉环境并到达自己想去的地方,如图书馆、旅店、咖啡厅等,我们会做下面这些事情。

如以上五步在整个行进的过程中,我们同时进行定位和建图。如果将一个机器人放入未知的环境中的未知位置,是否有办法让机器人一边逐步描绘出此环境完全的地图,一边决定应该往哪个方向行进?如扫地机器人,如何能不受障碍物影响行进到房间,并进入每个角落完成清扫工作。这就涉及到两个主要的任务,建图任务与定位任务,并且这两个任务是并发的。2、SLAM是什么SLAM(Simultaneous Localization and Mapping,即同步定位与地图构建)是一种在机器人学、自动驾驶和移动机器人和增强现实等领域中非常重要的技术。SLAM最早由Smith、Self和Cheeseman于1988年提出,是实现真正全自主移动机器人的关键。SLAM技术解决的问题是,机器人被放置在一个它从未见过的环境中,SLAM技术让机器人在没有任何先验地图信息的情况下,通过自身的传感器来探索环境,同时构建出环境的地图,并在这个过程中确定自己在地图中的位置。定位(Localization)任务和地图构建任务(Mapping)是同时进行的。下图是一个3D SLAM的示例。

SLAM可以分为激光SLAM和视觉SLAM,激光SLAM可以分为2D SLAM和3D SLAM,视觉SLAM可以分为Sparse SLAM和Dense SLAM

SLAM技术的发展涉及到多个学科,包括计算机视觉、机器人学、人工智能和控制理论等。随着技术的进步,SLAM在精度、效率和应用范围上都有了显著的提升。

3、SLAM中有哪些关键技术点?

(1)传感器技术:外部信息的采集依赖惯性测量单元(IMU)、霍尔编码器(Encoder)、激光雷达(Lidar)、深度摄像机等。


(2)算法技术

应用SLAM算法的时候主要考虑下面几个方面

以视觉SLAM(VSLAM)为例,SLAM处理信息处理流程可以归纳为如下流程图,其中“前端”是视觉里程计提取每帧图像特征点,利用相邻帧图像,进行特征点匹配,然后去除大噪声进行匹配,得到一个位姿信息,同时利用IMU提供的姿态信息进行滤波融合。后端”则是通过非线性算法对前端输出的结果进行优化涉及的数学知识较多,需利用滤波理论(EKF、UKF、PF)、或者优化理论等算法进行优化,最终得到最优的位姿估计。

常见的SLAM算法包括一下算法。PTAM算法,这是早期的视觉 SLAM 算法;Mono-SLAM算法,是单目视觉SLAM算法;ORB-SLAM算法,是基于 ORB 特征的视觉SLAM算法,具有较好的实时性和鲁棒性;还有RGBD-SLAM算法、LSD-SLAM算法等。实际应用中,SLAM建图具体实现方式会因使用的算法、传感器类型以及应用场景的不同而有所差异。

使用ROS实现机器人的SLAM是非常方便的,因为有较多现成的功能包可供开发者使用,如gmapping、hector_slam、cartographer、rgbdslam、ORB_SLAM、move_base、amcl等,并且开发者还能应用仿真环境进行验证。ROS机器人操作系统可以参考ROS(Robot Operating System)机器人操作系统 (qq.com),机器人仿真工具可以参考 Gazebo - 开源机器人仿真工具 (qq.com)

4、SLAM技术在自动驾驶中的应用

(1)SLAM技术在自动驾驶中的应用体现在以下几个方面

(2)SLAM技术具体实现步骤

通过这些步骤,SLAM技术为自动驾驶汽车提供了强大的环境感知和导航能力,确保其在复杂环境中的安全和高效行驶。


关键词: 激光雷达 ADAS 雷达

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版