sepic电路应用及sepic斩波电路波形分析

  作者:fanxiaoxi 时间:2022-10-26

一、sepic电路应用

sepic电路应用(一)

市电220V首先经过变压器降压后,通过整流、滤波转换为直流电。由于整流、滤波输出后的电压较高,首先进行直流电压的一次降压,然后供给升降压SEPIC变换器,采用电位器实现无极电压调节,通过模数转换芯片采集电压、电流并显示。另外,输出回路增加过流保护。系统整体设计方案框图如图1-1所示。

开关电源电路设计

(一)SEPIC转换器电路设计

SEPIC转换器又称为升降压转换器,是本开关电源的重要组成部分。选用XL6009开关升降压型DC-DC芯片,固定开关频率400KHZ。超宽输入电压5~32V,超宽输出电压1.25~30V,具有自动升降压功能,在工作范围内任意电压输出均可稳压任意电压输出,最大输出电流为4A。原理图如图2-1所示。

由图可知XL6009芯片5脚为反馈端,4脚为电压输入端,3脚为功率输出端,2脚为内部电压调节端,不用可悬空,1脚为接地端。输入端需并联电解电容以消除噪声。由于输入电压最高32V,考虑各种因素,选择35V,220uF的固态电容,并且再并联一个瓷片电容以进行高频去耦。若输出电压最大为30V,需保证有一定的裕量,故选择50V,220uF的固态电容,且再并联一个瓷片电容以配合。因电感器对输出纹波有直接影响,通过计算两个电感均选择47UH。输出电压可调主要是依靠反馈电阻R1,R2的比值,R2为可调电位器,R1为固定阻值电阻。通过调节R2即可调节输出电压,得到5~30V之间的任意宽范围电压。

(二)TLC2543A/D转换采集电路设计

A/D转换电路负责对开关电源输出回路进行电压、电流实时检测,及时将检测值送给主控芯片,再由主控芯片对回路进行相应的保护。A/D转换采集电路图如图2-2所示。由图2-2可知,TLC2543A/D转换芯片11路模拟输入端口外接所要检测的值,电源的正负极接一去耦电容,以减小输入芯片的电源纹波。转换芯片还需个基准电压才能进行正常的A/D转换,此部分可直接板载电压或也可用一精准的基准电压。虽然外围电路简单,但因是一片较为敏感的芯片,尤其在高速转换时,极易受到外界干扰使转换值不准确,这就要求其芯片底部尽可能不要有信号线或电源线接近。

(三)电压衰减电路设计

开关电源若输出可调电压5~30V,远远大于A/D转换芯片的模拟输入量,需对其进行降压才能输入给转换芯片,这就采用分压电路。电压衰减电路可分为运放负反馈衰减和分压衰减。通过对比发现分压衰减电路较简单,分压衰减即是通过两个电阻串联对电压进行比例分配。其分压电路如图2-3所示。

图2-3分压电路原理图

sepic电路应用(二)

在不要求主级电路和次级电路之间电气隔离且输入电压高于或者低于输出电压时,SEPIC 是一种非常有用的拓扑。在要求短路电路保护时,我们可以使用它来代替升压转换器。SEPIC 转换器的特点是单开关工作和连续输入电流,从而带来较低的电磁干扰(EMI)。这种拓扑(如图1 所示)可使用两个单独的电感(或者由于电感的电压波形类似),因此还可以使用一个耦合电感,如图所示。因其体积和成本均小于两个单独的电感,耦合电感颇具吸引力。其存在的缺点是标准电感并非总是针对全部可能的应用进行优化。

图1 SEPIC 转换器使用一个开关来升降输出电压

这种电路的电流和电压波形与连续电流模式(CCM) 反向电路类似。开启Q1 时,其利用耦合电感主级的输入电压,在电路中形成能量。关闭Q1 时,电感的电压逆转,然后被钳制到输出电压。电容C_AC 便为SEPIC 与反向电路的差别所在;Q1 开启时,次级电感电流流过它然后接地。Q1 关闭时,主级电感电流流过C_AC,从而增加流经D1 的输出电流。相比反向电路,这种拓扑的一个较大好处是FET 和二极管电压均受到C_AC 的钳制,并且电路中很少有振铃。这样,我们便可以选择使用更低的电压,并由此而产生更高功效的器件。

关键词: 斩波电路 sepic电路

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关电路