一文看懂3D晶体管

时间:2016-11-02来源:网络

  随着半导体制程工艺的发展,硅晶体管的局限逐渐被显现出来,为了摩尔定律继续生效,业界推出了3D晶体管的的定义,而谈到3D晶体管,就不能不谈Intel的Tri-Gate晶体管和台积电的FinFET制程。我们来深入了解一下吧。

  让硅半导体导电

  硅半导体的特性就是它不导电,读者们一定要问如果它不导电那我们的芯片难不成是米糕做的?答对了,就是米糕!

  水电工前辈们知道硅结晶呈现了很稳定的四价键结构,所以晶体之中没有什么自由电子活动空间,如果没有外力填充电子进去或者填充电洞进去是没什么机会导电的。所以就在硅结晶中加入了少量的五价或三价原子杂质进去,大概都不超过万分之一,让硅结晶像米糕一样乱一些,这样一来就可以导电了!

  其中加入三价杂质的硅结晶会产生出一些可以容纳正电荷的空间,我们称之为电洞,加入五价的则会产生多余的电子出来可以自由漂移。仔细观察可以发现,电子飘移的速度会比电洞快很多,这是因为电洞并不是真的正电荷在移动,而是靠负电荷在推挤移动时产生的相对移动现象。

  P、N组成二极体

  好不容易让硅导电之后,水电工们把填入三价杂质的P型半导体和加入五价杂质的N型半导体连起来发现,它又不导电了!呃,不对,当电流换一个方向由P流至N时它其实是会导电的,这就是大家熟知的二极体。

  二极体能单向导电,主要还是因为电流从P型半导体流往N型半导体时,可以轻易地跨过介面电场(因为电场方向和电流方向相同),而反向时则会和这个由材料差异引起的介面能阶差互相对冲以致无法流过去。不过当电压大于能阶差的时候还是会打穿的,基纳二极体就是利用这个效应工作的整压二极体。

  

 

  ▲P型半导体的结构示意

  

 

  ▲N型半导体的结构示意

  三极晶体管的由来

  三极晶体管的设计目的,就是希望利用二极体的特性,建构一个可以由人为方式控制导通/不导通的控制器。所以任何一种三极晶体管都是由一个控制极,一个输入极,一个输出极组成。当我们希望它导通时就在控制极输入某个电压,形成通道,然后电流就能由输入极流到输出极去,这个输出极可能又会连到另一个晶体管,变成控制讯号,这样一连串的连结就构成了可以用布林代数(一种二元运算的偏序集合)控制结果的数字控制器。

  

 

  ▲顺向偏压

  

 

  ▲逆向偏压

  当然各位熟知常用在音响线路上的放大器也是一种三极体的应用,当通道在半形成状态时晶体管就会开始输出了,而此时控制极的电压稍稍拉高,输出就会约略线性加大,反之亦然。所以我们可以只检测到很小的讯号送到控制极,却在输出端复制出一个长相很类似输入讯号、但是力量却大了百倍不只的讯号,这就是放大器。

  

 

  ▲三极晶体管的基本构想

  

 

  ▲理想的三极控制器输入与输出关系

  介面电场

  当2种物质被人类结合在一起时,由于两者之间原子和电子分布情况不同,会在介接面产生一个电场,这个电场就叫介面电场,而电场的大小就叫介面能阶差。不只半导体有这个介面电场,就连良导体也会有这种现象,只是良导体的介面电场很小,不过对于高频讯号而言仍然会造成障碍,好比超过10GHz电波用的天线材料或导线及接头等都是要特别制作的。

  重要课题:通道的形成

  按照不同的晶体管结构,就会有不同的通道形成方式,我们来看看早期最有力、速度最快的BJT晶体管和现在最常用的MOSFET晶体管有什么不同。

1 2 3 4 5 6

关键词: 3D晶体管

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版