探测机器人煤矿井下地图创建

时间:2013-03-12来源:网络


6Canny边缘检测和Hough变换边缘提取

    图6Canny边缘检测和Hough变换边缘提取

  在井下环境中,红外热像仪在各种地形的检测中发挥着不可或缺的作用。当井下环境中光照亮度不够时或者视觉传感器不能判别时,可以用红外热像仪传感器采集到的图像数据与视觉传感器相融合,加强对地形的检测。

红外热像仪采集到的井下环境图像

  图7红外热像仪采集到的井下环境图像

  图7为在井下环境中红外热像仪采集到的图像。对此图像采用纹理检测和边缘检测,与视觉传感器采集到的数据相互融合,增强了对井下阶梯的检测能力,为机器人寻找规划最优路径提供了前提。

  3.4.2较大面积水面识别

  在越野地形下,对于移动机器人自主导航来说,对积水的探测是一个重要的挑战。对于水密性不好的机器人来说,穿越较深的水域会对机器人本体造成严重的后果,虽然DEEC_II机器人本体是基于IP67标准设计的,但由于机器人携带有如气体传感器等需要与空气密切接触的设备,因此过深的积水仍然会对机器人的功能造成无法挽回的损坏。

  近年来,应用于移动机器人导航的水体检测技术已经有了一定的研究基础和初步的发展。在2003年,Matthiesetal.通过记录与分析能够影响水体属性的环境变量,采用多种传感器研究了在各种不同环境条件下的水体检测[[i]]。Iqbaletal.最近也在使用传感器和相关的算法进行探测水体的研究工作[[ii]]。多种不同的传感器,包括被动式传感器(视觉,短波红外,热红外,偏振,遥感)[[iii]]和主动式传感器(激光)在水体的检测的研究中获得了较为广泛的应用。

  能够表现水体存在的特征有好多,例如水体的颜色,水体的纹理,水体的起伏和水体的红外辐射能等等。根据单一的特征去检测仅仅对某一特定的水体有效。例如,时空变化分析对从固定的平台去检测流动的水体是有效果的,但是静止的水体效果不理想[[iv]]。也可以通过可见光相机采集的多种水体特征,通过信息融合的方法来检测水体[[v]],A.Rankin利用水体对天空或其他景物的反射等多种特征的融合用于于日间水体的检测。Xie利用水体反射的偏振特性提出一种进行水体特征检测的算法[[vi]]。上述研究人员所提取的水体特征,如天空反射、景物反射以及偏振特性等,多数是在日间条件下进行的,对于夜间水体检测的研究目前未见有比较完善的方法,而Rankin提到,他们进一步将要主要解决的问题也是夜间水体检测的问题。

  煤矿井下环境常年不见日光,在灾后绝大多数情况下井下都是处于断电状态,是不可能有外界照明的。因此,井下机器人对于水体的检测只能依靠其自身照明系统或夜视系统来实现,水体对于来自机器人照明系统灯光的反射由于入射角度的原因与自然光或外部灯光照射下的情况有很大的不同。这里我们热成像仪和视觉传感器相结合的方式检测井下水体。通过不同传感器对水体特征的检测确定疑似水体目标,接下来通过对这些特征数据的信息融合,筛选排除可能性较小的疑似水体目标,最终获得真实水体的位置和大小为机器人的自主导航规划路径提供可靠信息。

  采用热成像仪对水体进行检测

  热成像仪是一种用于检测远红外热辐射的传感器,我们采用的FLIRPHOTON320热像仪其检测波长范围为2-14μm。通过热像仪可以有效地探测井下物体的红外辐射信号,并将其转换为可以能够进行信息处理的图像信号。

  红外成像技术实质上是一种波长转换技术,即把红外辐射分布转换为可视图像的技术。它将来自景物自身各部分红外辐射的差异转换为可见图像的细节,最终形成一幅红外热图。与场景的可见光图像不同,场景的红外辐射并不能由人眼直接观测,而需要借助红外探测器将红外辐射转换为某种可被显示设备显示的信号(如电压、电流等)。红外成像技术的实现设备被称为红外成像系统(热像仪是其中典型的一种),主要由光学系统、探测器、信号处理器和显示设备等部件组成。

  在井下环境中,矿石、轨道、支柱、机械、水体等等目标,由于在物质的内部,电子、原子、分子都在不断的运动着,在有外界的刺激或干扰的情况下,电子、原子、分子会改变运动的状态,就会发生能量的释放——热辐射。在绝对零度(-273℃)以上的物体都不同程度的辐射红外能量。每种物质有其自己独特的能量特征信息,因而不同物质对应的辐射能是不一样的。利用这一区别,就可以检测出井下环境中存在的水域,如图8所示。

  需要说明如何进行检测,例如水的热熔比比较高,以及蒸发等现象的存在,导致水体温度往往地域周围的温度,这是检测水体存在的一个重要特征。

采用热像仪检测到水体图像

  图8采用热像仪检测到水体图像(灰度较深部分为水面)

  视觉传感器检测水面

  在自然环境中,水面一般是具有较高亮度(自然光或较高入射角的灯光环境),弱纹理(基本无波纹和倒影)的区域。这一点在井下略有不同,机器人本体上携带的灯光相对来说入射角度低,亮度较强,由于水面的起伏度和粗糙度相对于水面周围环境来说要小得多。因此,对于较低入射角来说,水面会由于镜面反射的原因,其表面成像区域的亮度相对较低;而水面周五的土壤、石块、路面等由于存在漫反射的原因,其平均亮度相对较高。另外,一般情况下,相对于水面附近的地面,机械,墙壁等其起伏程度、高程都较低,在非结构化路面条件下其高程差多数比较明显。因此,利用立体视觉技术,将探测区域的亮度、纹理、起伏度和高程等多特征并进行合理的融合,可以获得较为准确的井下水面检测结果。

  井下水面亮度特征的提取:

  是否考虑使用K均值聚类的方法,这个需要衡量一下,另外,使用K均值聚类可以将多个因素,如亮度、纹理、高程等因素同时考虑实现分类。

  聚类(Cluster)分析是由若干模式(Pattern)组成的,通常,模式是一个度量(Measurement)的向量,或者是多维空间中的一个点。聚类分析以相似性为基础,在一个聚类中的模式之间比不在同一聚类中的模式之间具有更多的相似性。

  由于井下环境相对于野外环境较为固定,为了更加准确的提取井下水面的亮度特征,采用了自适应的二值分割法。

  首先,通过立体视觉传感器采集到井下一般环境的(含水面)的多幅彩色图像组成一个井下环境的图库。将采集到的彩色图像转换成灰度图像,并用人工的方式将水面与其他周围的景物分割开。从图库中统计出井下水面和周围环境图像的灰度值的范围,确定这两类环境的灰度值的中心值的范围——经验阈值。经过多次的实验,调整确定经验阈值,这样在根据亮度检测水体时,能够格更加精确地分类。经过大量的井下实验,水面灰度大致是180左右,周围景物(非水面)的灰度大致是40左右。统计得到了水面和非水面的中心值后,把经验阈值设为水面和非水面的中心值,然后就可以进行对井下环境聚类了。把要检测的灰度图中每一个像素点和中心值比较,根据最近邻法把每个像素点都聚类,聚类完成后就得到了两类;然后按照聚类的结果算出新的两个类的中心点,重新进行聚类;这样就可以不停的把要检测的图片中像素聚类,不断更新得到两类的中心点,可以预见中心点的变化将趋于稳定。当得到的两个中心点前次和后次相当接近的时候,就停止运算(比如说前后两次运算结果得到的中心点的值的比值大于0.999)。通过以上运算,就可以按照亮度把待检测图分割为两个类——水面和其周围环境。

  基于亮度特征的井下水面检测存在着其固有的问题,可能将其他高亮的物体(例如,光滑的单色物体,表面整齐的矿石等等)误判为水体。

  井下水面纹理特征的提取:

  纹理,是对图像的象素灰度级在空间上的分布模式的描述,反映物品的质地,如粗糙度、光滑性、颗粒度、随机性和规范性等。对纹理简单的理解可以是物体表面的平滑程度,一般来说,水面相对于周围的环境,应该是比较光滑的弱纹理区域,所以通过寻找一幅图片中的弱纹理区域可以提取出要检测的水面。

  描述一块图像区域的纹理有三种主要的方法,统计分析方法、结构分析方法和频谱分析方法。统计方法有自相关函数、纹理边缘、结构元素、灰度的空间共生概率(spatialgay-tonecooccurrenceprobabilities)、灰度行程和自回归模型。统计方法将纹理描述为光滑、粗糙、粒状等等。结构方法研究基元及其空间关系,基元一般定义为具有某种属性而彼此相连的单元的集合,属性包括灰度、连通区域的形状、局部一致性等。空间关系包括基元的相邻性、在一定角度范围内的最近距离等等。根据基元间的空间联系,纹理可以分为弱纹理或强纹理,进一步细分,可以根据基元的空间共生频率来划分,也可以根据单位面积内的边缘数来区别,基元也可以定义为灰度行程。频谱方法是根据傅立叶频谱,根据峰值所占的能量比例将图像分类。包括计算峰值处的面积、峰值处的相位、峰值与原点的距离平方、两个峰值间的相角差等手段。

  描述一幅水面图片纹理的方法如下:算法开始时先设置大小为N×N的滑动窗口,按照从左向右,从上到下的顺序滑动。每次滑动一个像素的距离,并计算窗口内的象素灰度的相似度(公式如下);



  Ti为窗口内像素灰度的相似度,可以认为这是对纹理的描述,窗口内灰度变化越大,则相似度越小,那么纹理就越强,反之纹理越弱,Xi为每个窗口内的各个像素灰度值,而X为窗口内像素灰度和的均值,N为窗口大小。在我们的实验中,窗口的大小是根据经验设置的,窗口不能太小,太小了反映不出具体的纹理特征,太大了会造成划分太粗,通过大量的实验,认为设置窗口大小N=9(没有做过试验,需要验证)效果是最好的。通过以上计算,就得到一幅图片中除去边缘像素的每一个像素的纹理描述,进而得到一张图片的纹理描述图。提取水面纹理特征通过将水图库中的所有图片进行处理,得到一个水面纹理库,对这些水面和非水面的纹理统计,最终确定水面纹理值的范围一般在5左右(有待试验),而周围纹理较强的景物的纹理相似度则一般在7以上,有相对明显的区分度,我们可以利用这个统计结果来合理的设置初始值。通过聚类的方法能很容易就找到一幅图片中的弱纹理区域,这就是要找的水面。
1 2 3 4 5

关键词: 探测机器人 煤矿 井下地图创建

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版