无源自适应控制Buck-Boost变换器研究

时间:2012-12-13来源:网络

4.2 自适应控制律的设计
图3中的自适应机构就是要利用可调模型与参考模型间的状态矢量误差e产生一个合适的自适应规律,使得可调模型的X2能逼近X2ref。根据Popov超稳定性理论,变换器占空比偏差△d与e存在比例积分关系。设计无源自适应控制律为:
i.JPG
式中:kp,ki分别为比例系数和积分时间常数的倒数;d’为由无源性控制律计算得到的变换器开关占空比。
当发生电源扰动时,如E变小,导致无源控制器输出减小,此时系统输出相应减小。但由于自适应机构作用输出△d增加,导致d增大,变换器输出增大直至恢复到期望电压输出,反之亦然。因此通过△d来改变无源控制的输出d,减小e,从而可使电源系统输出在输入电源宽范围扰动下恢复到期望值。
4.3 仿真分析
设定自适应机构参数kp=0.013.ki=2.61,其他系统仿真参数不变。系统分别在E>12 V,E12 V两种输入电源电压扰动情况下采用无源自适应控制律进行仿真。
图4为Buck-Boost在无源自适应控制下的输出响应。图4a为E12 V扰动时(在t=0.06 B输入电源从12 V变化到8 V),输出能快速调整到稳态输出(12±0.065)V,稳态时间小于15 ms。图4b为E>12 V扰动时(在t=0.06 s输入电源从12 V变化到19 V),系统稳态输出在0.01 s内快速恢复到(12+0.057)V,完全满足稳态要求。

j.JPG


仿真结果表明:采用无源自适应控制策略的Buck-Boost变换器具有良好的动静态性能指标及抗输入电源扰动能力。

5 实验
5.1 机场助航灯光监控系统供电电源
为实现无源自适应控制策略,设计了数字控制Buck-Boost开关电源实验样机,Buck-Boost开关电源系统结构框图如图5所示。

k.JPG


采用压频转换电路,将电压转换成数字式频率信号,再利用单片机的PCA频率捕获模式检测此频率信号,从而计算出对应的输出电压值,该电路具有较强的抗干扰能力。霍尔传感器将检测的电流信号转换成4 V以内的电压信号,经A/D转换成数字信号并计算处理,得出电感电流值。单片机再将检测到的电感电流值、输出电压值代入无源自适应控制律计算处理,以确定单片机输出的PWM占空比。
5.2 实验验证
在助航灯5级灯光(电流有效值2.8~6.6 A)下对基于无源自适应控制律的Buck-Boost进行实验,图6示出部分实验波形。图6a为3级光下Buck-Boost输出电压波形图,输出稳定时间约为20 ms;图6b为助航灯光由3级光切换到2级光(E从12 V突变到8 V)时输出电压波形,变换器输出恢复到稳态12 V所需时间约为20 ms。不同灯光等级下变换器输出结果如表1所示。

l.JPG

m.JPG


实验结果表明,在5种灯光电流等级下的数字控制Buck-Boost电源不仅具有良好的动、静态性能,而且对宽输入电压扰动具有很强的鲁棒性,满足灯光巡检单元工作电源的要求,充分验证了无源自适应控制策略的可行性。

6 结论
DC/DC变换器是一个强非线性、时变、离散系统,研究其非线性控制规律具有重要意义。针对无源控制在宽输入电源电压时稳态输出存在偏差的问题,提出无源自适应控制策略。在输入电压宽范围变化的助航灯光单灯回路上进行了实验,结果表明该变换器在满足动静态性能指标的同时,对宽输入电压扰动具有很强的鲁棒性。同时与传统的模拟控制器相比,数字式控制器具有更高的可靠性和灵活性,数字控制的DC/DC除瞬态响应稍慢,其他性能均可与模拟控制相媲美。

1 2 3

关键词: 变换器 非线性控制 无源性控制 自适应控制

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版