MSTP技术在3G传输体系中的地位与应用

时间:2010-11-12来源:网络

  目前各地本地网(主要指移动和联通)均已建成较为清晰完整的三层结构。如图2所示。

  图2 本地传输网结构示意图

  为使描述更为简单明确,我们将整个网络抽象成链状形式(左边的骨干节点既包含汇接层设备又包含骨干层设备)。如图3所示。

  图3 本地传输网结构图链状表示

  根据不同组网策略,RNC至NodeB之间主要可按如下5种方式连接。

  方案A:NodeB提供IMA接口,采用传统SDH将E1电路透传至RNC。如图4所示。

  图4 方案A

  图4中上面一组指RNC设备与起收敛作用的骨干节点在同一机房,即Iub业务不需要经过骨干层转接;下面一组指RNC设备与起收敛作用的骨干节点不在同一机房,即Iub业务需要经过骨干层转接。

  特点:没有采用MSTP技术,而仅采用传统SDH透传,不需对现有本地传输网进行任何改造(在技术层面),技术成熟,便于应用。但RNC侧需要大量的2Mbit/s接口,建设成本和维护压力较大。同时无法实现统计复用,对于突发性较强的3G业务,采用透传方式会造成传输带宽的极大浪费。

  一般RNC设备的容量大于现有2G网络的BSC。

  方案B:NodeB提供IMA接口,E1在传统SDH网络透传,通过信道化的STM-1与RNC连接。如图5所示。

  图5 方案B

  特点:与方案B类似也没有采用MSTP技术,巧妙地解决了RNC侧2M过多电路的问题,便于维护管理,且节省了部分配套设备的投资。但要求RNC设备支持信道化的STM-1接口。据了解目前大多数厂商RNC设备均支持信道化STM-1接口。

  方案C:NodeB提供IMA接口,采用SDH将E1电路透传至传输骨干节点,骨干节点的光传输设备需要升级为MSTP设备,利用其ATM处理功能将大量E1电路统计复用成为ATM的STM-1,并传至RNC。如图6所示。

  图6 方案C

1 2 3

关键词: MSTP 3G传输

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版