详解运放及其补偿技术

时间:2014-01-21来源:网络


通过引入超前-滞后补偿而引入了一个极点(?‘p,dom)和一个零点(?z),引入的极点(?’p,dom)变成了新的主极点,引入的零点(?z)基本上抵消了运放的固有主极点(?p,dom),虽然图3B显示的是?z和??p,dom之间完美的抵消。这样文献中所示的对应(错误的)图应该可以理解了。与许多其它补偿技术一样,超前-滞后补偿的一个明显优势是,所形成的主极点和非主极点之间的间距增加了,从而增强了稳定性。然而有人可能会问为何不是只执行超前补偿,用补偿网络引入的零点抵消运放固有的第一个非主要极点。

一个众所周知的原因是,超前补偿明显会产生带宽限制,而超前-滞后补偿不会。为什么超前-滞后补偿不会限制带宽呢?如果从开环增益曲线看全部可见的话,这个问题的答案不是很明确。有人也许通过分析闭环放大过程可以得到答案。针对超前-滞后补偿情况,另一篇文献很好地提出了闭环增益计算公式,但这里对这种技术为何不会限制带宽给出了一种直观的解释,虽然利用了一些简单的数学方法。

在图1所示的两个放大器配置中,运放的负输入端是负反馈点,因此只要在感兴趣频率点的开环增益幅度足够大,这就是一个非常低的增量阻抗节点,也称为虚地。所以将信号源电压转换为等效输入信号电流、然后乘上反馈电阻值(RF)得到纯输出电压(YINV)是有意义的,如图4所示。



图4:图3A的戴文宁等效电路。

完成这种转换的一种流行方法是通过戴文宁等效网络。图4显示了图3A的戴文宁等效电路。在图3A中,假设运放及其反馈网络不存在,换句话说去除了负载,然后考虑在以前连接的运放负输入端处来自输入源(XINV)的贡献。这种贡献可以被称作戴文宁等效电压(VTH),它的幅度随频率增加而减小,因为当频率增加时补偿电容的阻抗会减小。

与此同时,由于补偿电容的作用,戴文宁等效串联阻抗(ZTH)受相同方式的影响。因此流向运放负输入端(虚地)的净信号电流(ISIG)将等于(VTH/ZTH=XINV/RG),其中分子项VTH中的所有拐点将被分母项ZTH中的所有拐点所抵消,继而导致不受补偿网络影响的信号电流。最终由于超前-滞后网络的使用而没有带宽限制。见公式2a和公式2b.


这种超前-滞后实现的缺点是,随着频率的变化会出现噪声增益峰值,但只要有足够的补偿,信号路径增益就不会出现峰值,因而降低了信噪比(SNR)。

超前补偿:不同实现方法

至此讨论的超前-滞后补偿(图3A)的实现方法是,在运放负输入端到地之间、或等效在运放两个输入端之间连接串联电阻和电容元件。然而,当这样的串联结构连接在放大晶体管的输入-输出引脚之间时,补偿技术被称为超前补偿与最终极点分离补偿的组合。这种串联电阻与电容补偿结构几乎总是存在于运放内部。

通常这个过程一开始是在增益单元间放置一个电容,这样由于电容米勒效应会形成极点分离补偿。然后为了补偿由此形成的右半平面零点,需要增加一个串联电阻,并通过调整阻值实现超前补偿,此时需要移动零点直到它抵消第一个非主要极点。最终人们如何连接这样的串联电阻和电容网络取决于超前或超前-滞后补偿顶点的具体要求和可用选项。

为了在使用运放IC的放大器中实现超前补偿,需要并联反馈电阻放置一个反馈电容[1,3].尽管是超前补偿实现方法,但它的意图通常是通过补偿网络引入一个零点来抵消一个极点,而且一般是待补偿系统的第一个非主要极点。

结束语

按照文献中描述的补偿网络严格定义,图3A中所示的所谓超前-滞后补偿从严格意义上讲是一种滞后补偿。同样,在晶体管放大节点间放置的所谓超前补偿网络,严格来说也是一种滞后补偿网络。这再一次提醒人们这些补偿技术实际上有多相似,而在不同参考文献中基于这样那样的理由却被分成不同的种类。也许除了“增益补偿”技术外,所有上面提及的补偿技术都可以归类为“拐点补偿”技术,因为直流开环增益幅度在补偿过程中保持恒定,只有拐点会经历重新定位、创建和消除的组合过程。

1 2

关键词: 运放 补偿 前馈增益 噪声增益

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版