详解与公用电网相连的逆变器在建模与控制方面电路设计

时间:2013-12-11来源:网络
le="border: none; vertical-align: middle; float: none; ">

其中,α=1 − T/τ,T为采样周期。图1为单项逆变器PLL的功能框图。图2显示三相PLL算法。

防孤岛效应

为安全起见,当公用电网由于某种原因中断后,并网逆变器须与公用电网断开。这样,当电网系统不受电力公司直接控制时,就可以防止注入电网系统的电能对供电人员和设备造成伤害。当电网未运转时,如果逆变器将电能注入电网,将会产生孤岛效应。

所有并网逆变器必须具有过频/欠频(OFP/UFP)和过压/欠压(OVP/UVP)保护方法,以便当电网电压或频率超出可接受的范围时,防止逆变器为电网供电。图3显示了逆变器与公用电网的典型连接。逆变器的输出功率为P +jQ,本地负载为Pld +jQld,其余功率由电网ΔP +jΔQ提供。电网断开后,系统是否运转由ΔP和ΔQ的值决定。如果ΔP≠0,电网电压的振幅将产生变化,且OVP/UVP能够检测到这种变化并防止孤岛效应的产生。如果ΔQ≠0,电网的相位会产生突然转移,OFP/UFP将对频率的变化和孤岛条件进行检测。当逆变器实际功率和无功功率与负载不匹配时,或者当负载网络的谐振频率值与逆变器OVP/UVP的谐振频率值之间存在很大差距时,可利用OFP和UFP来检测孤岛条件。然而,仅通过逆变器来满足负载要求时,检测孤岛条件的难度就大大增加了。逆变器的认证测试要求(例如IEEE1547)旨在考察当ΔP和ΔQ的值都接近于0时,逆变器的响应时间。

图3:逆变器与公用电网的接口

不可检测区(NDZ)的概念用于确定在给定ΔQ、ΔP值的条件下防孤岛算法的有效性。孤岛检测的反应时间取决于NDZ。ΔQ的NDZ值的计算公式如下:

有很多种主动和被动的方法可以检测孤岛条件。被动方法要么难以实现,要么有较大的不可检测区。而主动方法则需要向电网加入干扰信号。为避免电网在正常工作状态下变得不稳定,必须对干扰信号的加入进行合理控制或使其与其它逆变器协调。如能同时实现桑迪亚频率移动算法和桑迪亚电压移动算法,将能够非常有效地检测孤岛效应。桑迪亚频率移动算法基本是在频移算法的基础上进行了改动,见下列公式:

cf = cf 0 + K(fa − fline),

其中,K是一个加速器,当电网断开后,它可以使逆变器输出频率变得不稳定。

桑迪亚电压移动算法与频移算法相似。逆变器输出电流根据电网电压的变化增加一个额外的项,见下列公式:

iout = iref + KΔV。

这两种方法均导致逆变器输出波形的电能质量变差。波形的质量与预期的检测时间可通过K值进行权衡取舍。桑迪亚算法通过逆变器向电压和频率调节加入少量正反馈,因此逆变器会不断尝试让电网变得不稳定。当电网稳定性强时,这个算法可以产生非常好的效果;但试想一下,如果可再生资源进一步加大渗透力度,会发生怎样的情形呢?

电流调节

电流调节算法用来控制需要传输到电网中的输出电能量。要想对最大电能进行有效处理,电流调节算法的精度非常关键。为符合适用标准对总谐波失真的限制,电流调整算法的质量也十分重要。

业界提出了许多控制算法来控制逆变器并网运行时的输出电流。带有各种闭环补偿器的迟滞型控制器是在可变或恒定的开关频率下运行的。此处介绍一个易于实现的有效电流调节算法,该算法可与各种电网同步方法配合使用,也适用于多级逆变器。

为控制正弦逆变器输出电流,可将动态坐标系转换成参考坐标系,在该坐标系中,预期的波形是一个直流量,而不是特定频率的正弦曲线。也就是说,这是一个dq参考坐标系。这样,可以利用积分控制操作消除稳态误差。完成dq坐标系转换后,逆变器的电气动态特性如下:

1 2 3 4

关键词: 逆变器 建模 控制

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版