高亮度LED的散热传导技术探讨

时间:2013-09-09来源:网络
ize-adjust: auto; webkit-text-stroke-width: 0px">  可是,现在还有许多应用是需要高亮度,但又需要将高亮度LED密集排列使用的,例如交通号志灯、讯息看板的走马灯、用LED组凑成的电视墙等,密集排列的结果便是不易散热,这是应用所造成的散热问题。

  更有甚者,在液晶电视的背光上,既是使用高亮度LED,也要密集排列,且为了讲究短小轻薄,使背部可用的散热设计空间更加拘限,且若高标要求来看也不应使用散热风扇,因为风扇的吵杂声会影响电视观赏的品味情绪。

  散热问题不解决有哪里些副作用?

  好!倘若不解决散热问题,而让LED的热无法排解,进而使LED的工作温度上升,如此会有什么影响吗?关于此最主要的影响有二:(1)发光亮度减弱、(2)使用寿命衰减。

  举例而言,当LED的p-n接面温度(Junction Temperature)为25℃(典型工作温度)时亮度为100,而温度升高至75℃时亮度就减至80,到125℃剩60,到175℃时只剩40。很明显的,接面温度与发光亮度是呈反比线性的关系,温度愈升高,LED亮度就愈转暗。

  温度对亮度的影响是线性,但对寿命的影响就呈指数性,同样以接面温度为准,若一直保持在50℃以下使用则LED有近20,000小时的寿命,75℃则只剩10,000小时,100℃剩5,000小时,125℃剩2,000小时,150℃剩1,000小时。温度光从50℃变成2倍的100℃,使用寿命就从20,000小时缩成1/4倍的5,000小时,伤害极大。

  裸晶层:光热一体两面的发散源头:p-n接面

  关于LED的散热我们同样从最核心处逐层向外讨论,一起头也是在p-n接面部分,解决方案一样是将电能尽可能转化成光能,而少转化成热能,也就是光能提升,热能就降低,以此来降低发热。

  如果更进一步讨论,电光转换效率即是内部量子化效率(Internal Quantum Efficiency;IQE),今日一般而言都已有70%90%的水平,真正的症结在于外部量子化效率(External Quantum Efficiency;EQE)的低落。

  以Lumileds Lighting公司的Luxeon系列LED为例,Tj接面温度为25℃,顺向驱动电流为350mA,如此以InGaN而言,随著波长(光色)的不同,其效率约在5%27%之间,波长愈高效率愈低(草绿色仅5%,蓝色则可至27%),而AlInGaP方面也是随波长而有变化,但却是波长愈高效率愈高,效率大体从8%40%(淡黄色为低,橘红最高)。

  19.jpg

  备注:从Lumileds公司Luxeon系列LED的横切面可以得知,矽封胶固定住LED裸晶与裸晶上的萤光质(若有用上萤光质的话),然后封胶之上才有透镜,而裸晶下方用焊接(或导热膏)与矽子镶嵌芯片(Silicon Sub-mount Chip)连接,此芯片也可强化ESD静电防护性,往下再连接散热块,部分LED也直接裸晶底部与散热块相连。(图片来源:Lumileds.com)

  20.jpg

  备注:Lumileds公司Luxeon系列LED的裸晶采行覆晶镶嵌法,因此其蓝宝石基板变成在上端,同时还加入一层银质作为光反射层,进而增加光取出量,此外也在Silicon Submount内制出两个基纳二极管(Zener Diode),使LED获得稳压效果,使运作表现更稳定。(图片来源:Lumileds.com)

  由于增加光取出率(Extraction Efficiency,也称:汲光效率、光取效率)也就等于减少热发散率,等于是一个课题的两面,而关于光取出率的提升请见另一篇专文:高亮度LED之「封装光通」原理技术探析。在此不再讨论。

裸晶层:基板材料、覆晶式镶嵌

  如何在裸晶

1 2 3 4

关键词: 高亮度 LED 散热传导

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版