基于FPGA的帧同步提取方法的研究

时间:2012-11-06来源:网络

2 同步提取原理

本文介绍的帧同步提取是在每一帧的前面加上长度为128位的PN码作为帧头数据(如图4所示),然后根据这些帧头数据的相关性提取相关峰值,帧头数据必须具有良好的自相关性和互相关性,当和本地码完全相同时其相关峰最大。

假设PN码为p(n),经A/D采样后第n个采样点的数据是data(n),噪声是N(n),那么data(n)和PN码之间的循环互相关函数为:

Rdp(k)=data(n)·p(k+n)  (1)

式中,L是PN码的长度。当data(n)正好与PN码对齐,即data(n)=p(n)+N(n)时,有:

Rdp(k)=Σ[p(n)+N(n)]·p(k+n)

=ΣN(n)·p(k+n)+Σp(n)·p(k+n) (2)

由于N(n)与PN是互不相关的,因此(2)式的前半部分相关值很小;而对于(2)式的后半部分,当其与本地的PN码完全对应,即p(n)=p(k+n)时,Rdp(k)将得到最大相关值。对于L=128的PN码,将会有一个21dB增益的相关峰,因此可以提取到明显的相关峰。

由以上分析可以看出,在同步相关提取的实现当中要用到反向器和乘法器,电路复杂,用FPGA设计必然会占很大的资源。经过研究分析并参考其它文献资料,这里采用补码配对相减匹配滤波法,仅利用减法器和加法器即可,不仅使电路设计简单,而且使电路得到极大的优化。在同步信息的复接部分用的帧头信息是一个128位的M序列码,而在同步提取部分用的则是该序列码的镜像码。

假设帧同步复接部分的同步头M序列码是:

1000010110/0010111010/1101100000/1100110101/0011100111/1011010000/1010101111/1010010100/0110111000/1111111000/0111011110/0101100100/10000000

而同步头M序列码的镜像码则为:

00000001/0010011010/0111101110/0001111111/0001110110/0010100101/1111010101/0000101101/1110011100/1010110011/0000011011/0101110100/0110100001

对镜像之后的本地码先进行编号,按照顺序依次从1编到128。第一位数字0编为1,第二位数字0编为2,第三位数字编为3......。在镜像本地码中,第一个出现数字1的位置编号为8,第二个出现数字1的位置编号为11......。依次做以下配对:

其中的映射关系是:a→10,b→20,c→30,d→40,e→50,f→60,g→70,h→80,i→90,j→100,k→110,l→120

在同步头中,既可以用符号1表示电平系数+1,用符号0表示电平系数-1,也可以用符号1表示电平系数-1,用符号0表示电平系数+1。本文采用符号0表示电平系数+1,用符号1表示电平系数-1。

配对之后,对各个组合对应的输入移位样点数据做补码减法运算。例如在组合(1,8)中,当样点数据进入移位寄存器时,将对应移位寄存器中的并行第一位输出作为被减数,第8位输出作为减数。其它组合类似。当样点数据中的同步头完全进入移位寄存器时,那么对应并行输出的第一位应该是正值,而第8位对应的是负值。两个输出做补码相减。正值减去一个负值,输出得到一个更大的数值。这时,只有增加运算的位数,才能得到正确的运算结果。

对128个编号可以做64个配对,这就需要64个减法器。64个减法运算同时进行,有64个输出结果。然后利用32个加法器对64个数值进行加法运算。逐级进行相加运算,最后得到一个相关峰值。假设data(n)是16bit的信息数据,在逐级相加运算当中,不是直接采用这16位进行补码减法和补码加法运算,而是随着一级级的相加运算,位数也一位一位地增加。这样就优化了电路,节省了FPGA资源。

假设一个码元采样8个点,经I、Q分路(以QPSK调制为例)之后,每一正交路为4个点。相对于(1,8)配对,在第一个补码配对减法器中对应的是{t13,t1[3..0]}和{t83,t8[3..0]};相对应(2,11)配对,在电路中对应的是{t23,t2[3..0]}和{ta13,ta1[3..0]};依此类推。

下面有必要分析一下为什么要表示成{t13,t1[3..0]}的形式。在补码运算中,由0101-1101=0101+0010+0001=0111+0001可以看到0111+0001的和值是一个更大的正值,是不能用4位表示的,因为这个时候和值本应为1000,表示结果8(十进制),而在补码中却为-8。如果将补码的头一位都进行重复,使其变为5位,就可完全避免这种情况的发生。例如:

00101-11101=00101+00010+00001=00111+00001=01000

11000-00111=11000+11000+00001=10000+00001=10001 通过这样的一个变换,即不会产生溢出,也不会产生错误,保证了电路进行逐级运算的正确性。

1 2 3

关键词: FPGA 帧同步 法的研究

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版