罗姆在新一代功率元器件领域的飞跃发展与前沿探索

时间:2012-11-21来源:电子产品世界

  作为替换硅材质器件,搭载SiC-MOSFET和SiC-SBD的模块,可实现100kHz以上的高频驱动。可大幅降低IGBT注5尾电流和FRD注6恢复电流引起的开关损耗。因此,通过模块的冷却结构简化(散热片的小型化,水冷却、强制空气冷却的自然空气冷却)和工作频率高频化,可实现电抗器和电容等的小型化。

  另外,由于开关损耗低,所以适于20kHz及更高开关频率的驱动,在此情况下,也可以用额定电流120A的SiC模块替换额定电流200-400A的IGBT模块。

  今后:罗姆将全面推动SiC元器件的普及

  相对于已经具有大量采用实绩的SiC-SBD而言,SiC-MOSFET和全SiC功率模块的真正采用现在才开始。相对以往硅材质器件的性能差别和成本差别的平衡将成为SiC器件真正普及的关键。罗姆在两个方面进行着技术开发:①基于SiC电路板大口径化,降低SiC器件成本 ②相对硅材质器件,开发在性能上具有绝对优势的新一代SiC器件。今后,罗姆将通过扩大普及SiC器件 ,助力于全球范围内实现节能和减少CO2的排放。

  第二章 罗姆在“GaN”功率元器件领域的前沿探索

  GaN功率元器件是指电流流通路径为GaN的元器件。“GaN”曾被作为发光材料进行过研究,现在仍然作为已普及的发光二极管(LED)照明的核心部件蓝色LED用材料广为使用。同时,还有一种称为“WBG”的材料,与发光元件应用几乎同一时期开始研究在功率元器件上的应用,现已作为高频功率放大器进入实用阶段。

  GaN与Si和SiC元件的不同之处在于元件的基本“形状”。图1为使用GaN的电子元器件的一般构造。晶体管有源极、栅极、漏极3个电极,Si和SiC功率元器件称为“纵向型”,一般结构是源极和栅极在同一面,漏极电极在基板侧。GaN为源极、栅极、漏极所有电极都在同一面的“横向型”结构。在以产业化为目的的研究中,几乎都采用这种横向型结构。

  之所以采用横向型结构,是因为希望将存在于AlGaN/GaN界面的二维电子气(2DEG)作为电流路径使用。GaN既是具有自发电介质极化(自发极化)的晶体,也是给晶体施加压力即会重新产生压电极化(极化失真)的压电材料。AlGaN与GaN在自发极化存在差别,由于晶格常数不同,如果形成如图1中的AlGaN/GaN异质结,为了匹配晶格常数,晶体畸变,还会发生极化失真。因这种无意中产生的电介质极化之差,如图2所示,GaN的禁带向AlGaN下方自然弯曲。因此,其弯曲部分产生2DEG。由于这种2DEG具有较高的电子迁移率(1500 cm2/Vs左右),因此可进行非常快的开关动作。但是,其另外一面,相反,由于电子流动的路径常时存在,因此成为栅极电压即使为0V电流也会流过的称为“常开型(normally-on)”的元件。  

  
 

  正如之前所提及的,对WBG材料的最大期待是提高耐压性能。由于SiC基本可以实现与Si相同的纵向型结构,因此发挥材料特性的耐压性能得以提升。但是,GaN则情况不同。图1所示的横向型结构较难提升耐压性能,这一点通过Si元件既已明了,只要GaN也采用图1的结构,物理特性上本应实现的耐压性能就很难发挥出来。但是,本来对WBG材料的期待就是耐压特性,因此,发布的GaN元器件多为耐压提升产品。但是,提升耐压性能的方法基本上只能通过增加栅极/漏极间的距离,而这样芯片就会增大,芯片增大就意味着成本上升。

  只要采用图1的结构,GaN功率元器件的特点不仅是耐压性能,还有使用2DEG的高速电子迁移率而来的高频动作性能。因而,GaN晶体管常被称为GaN-HEMT注7。

  “GaN”功率元器件的特性:确保高频特性并实现高速动作

  罗姆开发的“常开型(normally-on)”型元器件的特性见表2,是栅极宽度为9.6cm的元器件,命名为“HEMT”,可查到的其高频特性的文献非常少。起初罗姆以尽量确保高频特性为目标进行了开发,结果表明,罗姆的“常开型(normally-on)”元器件的动态特性非常优异。表中的td(on)、tr、td(off)、tf等特性指标表示高速性能。由于是“常开型(normally-on)”元器件,因此栅极进入负电压瞬间,元器件关断,0V时元器件导通。符号表示方法是:栅极电压信号关断时(元器件开始向ON移行时)为t = 0,源极/漏极间电压Vds减少到施加电压的90%之前的时间为td(on),从90%减少到10%的时间为tr,另外,栅极电压信号导通时(元器件开始向OFF移行时)为t = 0,Vds增加到施加电压的10%之间的时间为td(off),从10%增加到90%的时间为tf。

1 2 3

关键词: 罗姆 功率元器件 MOSFET

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版