基于滑模控制的正弦波逆变器控制方案介绍

时间:2012-09-05来源:网络


根据变结构系统理论,变换器方程可改写为:=A′x+B′γ+D(11)

x=y-y*(12)式中x为状态变量误差,x=,y*=。代入式(12)得:

iL=x1+iLref(13)

vc=x2+vref(14)

将式(2)代入式(13)并考虑i0=vc/R,得:iL=x1++icref(15)式中icref=C(16)

将式(14),(15)与(16)代入式(9)得:=++γ(17)

对照式(11)可得:A′=B′=(18)D=

改写式(3)为

s(x)=c1x1+c2x2=cTx(19)式中cT=,x=。

滑模存在的条件是要求所有在滑模面附近的状态轨迹都指向滑模面。通过滑模控制器产生的信号控制开关管的动作来保证系统的状态稳定在滑模面附近。因此滑模控制器需满足式(20):(20)

使开关管变量γ有如式(21)所示关系时,满足式(20)。γ=(21)

因此式(20)所表示的条件也可改写为:(22)

在实际应用中,可以认为状态变量误差x远远小于参考量y*,因此式(22)可变为:(23)

将B′与D代入得:(24)

式(16)代入式(24)得:(25)

当系统稳定时,式(7)等于零,可得电压误差的动态特性为:=-(26)在一个稳定的滑模控制中,必须满足>0。结合式(25),可得:

c1>0,c2>0(27)

设计一个有效的滑模控制器,就必须同时满足式(25)与式(27)两个条件。

理论上闭环滑模控制的变换器具有无限高的开关频率,但在具体实现时是不可能的,因为过高的开关频率会产生高频颤动,这种高频颤动会在系统中形成干扰,使系统不稳,同时高频颤动也增加了开关损耗。为了回避这种高频颤动,需要采取相应的开关频率降低方法,本文采用了延迟方法,即式(21)修改为:γ=(28)

式中σ为控制延迟量,当-σs(x)+σ时,开关状态保持不变。实际电路中通过一滞环比较器来实现。4仿真与实验

本变换器的滑模控制器如图4所示。该控制器的c1=0.3226,c2=0.2036;电流反馈系数k=0.08V/A;选取L=200μH,C=220μF。

图5~图7所示为负载R=100Ω时的电路仿真结果。Vin=200V,正弦参考电压vref=2+sin314t。从


一种基于滑模控制的正弦波逆变器

图8负载突变时输出电流波形和输出电压波形(仿真)


(b)输出电压


图9输出电压波形(实验)


(a)输出电流


图中波形可知,电压v1=62+31sin314t,电压v2=62-31sin314t,变换器的输出电压v0=v1-v2=62sin314t。图8为负载R从空载到R=10Ω时的输出电压。从图中可知,当负载突变时输出电压变化很小。

图9所示为负载R=100Ω,Vin=50V时的实验结果。

5结论

本文提出了一种新的正弦波逆变器的电路拓扑,阐述了其工作原理,并基于滑模控制原理设计了电路的控制方案。从仿真和实验结果可知此电路能较好地实现DC/AC变换,系统具有良好的动态和稳态响应。与传统的全桥SPWM电路相比,能获得更为理想的正弦输出电压。并且由于电感L和电容C是Buck电路的滤波元件,因此可以使用高频电感以及大的电解电容作为滤波元件,从而可以减小电感值以及电感体积。此外,该电路也能较好地跟踪非正弦给定信号,因而也可用于信号的功放。本方案的缺点是需采用两组控制器,控制电路相对较为复杂。

1 2

关键词: 控制 介绍 方案 逆变器 基于 滑模

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版