智能功率模块(SPM)的技术水平分析

时间:2012-08-15来源:网络


表1. LVIC (典型值0.5V) 的过电流探测电平

错误信号用于通知系统控制器保护功能是否已经激活。错误信号输出是在低电平有效的集电极开路配置。它一般通过上拉电阻被拉升至3.3V到15V。当错误发生时,错误线拉低,低边IGBT的所有栅极被中断。如果错误是过电流引起的,输出则出现一个脉冲,然后自动复位。首选的低信号持续时间取决于它的应用。例如,对于家电首选几毫秒,但是在工业应用中首选一至两倍的IGBT开关频率。SPM的LVIC提供外部电容,并根据各种要求设定该持续时间。

自举二极管

除了基本的三相逆变器拓扑,更多的集成是半导体公司面临的挑战之一。约束不是技术问题,受限的是成本和封装尺寸。从这一点来看,自举二极管似乎成为集成的合适器件。实际上,市场上已出现了数种内置自举二极管的产品,但是从技术角度来看,其方式略有不同。其中之一是使用HVIC上的高压结终止区域作为自举二极管。其应用局限于额定值在100W以下的低功率应用,因为这种方式具有较大的正向压降和较差的动态特性。功率在400W左右时,采用分立FRD作为自举二极管,但是由于其封装尺寸有限,没有串联电阻(RBS),因此需要对大充电流进行特殊处理,尤其在初始的充电期间。在高于400W的应用中,最常见的应用是将分立FRD和分立电阻进行组合。这种方式的唯一缺点是占用空间较大和相应的成本增高。

在SPM的开发中,采用了新设计的自举二极管,其设计目标是减小芯片尺寸和获得适中的正向压降,以得到20Ω串联电阻的等效作用。如图4所示,其压降特性等同于串联电阻和普通FRD。借助于这种特殊自举二极管的优点,能够实现更多的集成同时保持最低的成本。


图4. 内置自举二极管的正向压降

封装

开发SPM封装的主要因素是改善性价比,同时提升热循环和功率循环等封装的可靠性。因此,以往用于IC和LSI产品的转模封装技术被用于功率模块。与具有塑料或环氧树脂外壳的普通功率模块相比,SPM具有相对简单的结构:功率芯片和IC安装在铜引线框架上,基底材料与框架连接,最后在环氧树脂中模塑成型。

在封装设计中散热是重要的问题,因为它决定了模块的功率容量限制,且与隔离特性有着很大的折衷平衡关系。转模封装SPM系列根据功率额定值和应用,采用几种隔离基底,如表2所示。


表2. SPM系列的封装基底

借助现有的可变形基底的优点,可在Mini-DIP SPM封装中实现600V 3A到30A的功率额定值,同时保持PCB管脚布局和价格的竞争力,如图5所示。


图5. 不同电流额定值下SPM产品系列的结和外壳之间的热阻

除了更高的可靠性和热性能之外,制定模式的灵活性是DBC(直接相连铜)基底的另一个优点。这样可以针对多种应用提供派生产品,比如功率因数校正、开关磁阻电机等,在此只需改变DBC,而其它封装要素保持不变。

DBC的大批量生产还存在几个有待解决的技术问题,采用丝网印刷、多芯片安装技术以及传送带回流焊和助焊剂清理工艺,开发DBC基底和引线框架的多芯片安装和连接技术。通过回流焊温度曲线调整,获得接近零的焊接空洞,增加熔解区域之间的温度斜坡,优化焊料和丝网印刷掩模设计。通过模拟和实验方法,调适封装的热翘曲以优化DBC基底的铜层厚度。

结论

受到成本因素的约束,SPM设计所需的综合技术包括功率器件、驱动器IC、封装以及系统优化。对于实际的批量生产,组装和测试也是非常重要的。目前,SPM已将自身定位于最强大的低功率电机驱动逆变器解决方案,而其发展将会越来越快。

1 2

关键词: 水平 分析 技术 SPM 功率 模块 智能

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版