滤波电感在电源抗干扰中的应用分析

时间:2012-04-04来源:网络

有金属磁性材料好。当在频段100kHz~1MHz附近,铁氧体材料R急增而金属磁性材料和超微晶仍然平稳上升,在1MHz时进口铁氧体达到峰值,R最大,1J851次之。而国产铁氧体居第3位,超微晶其峰值则在7MHz附近,变化却比较平缓。从曲线变化可以看出铁氧体虽然吸收的峰值在1MHz附近,但吸收区比较狭窄,而金属磁性材料吸收区比较宽,故不同材料对不同频率的吸收敏感性不一样。所以制造共模滤波器时选用的电感材料一定要根据电路要求的抑制频段范围来选择电感材料,这是非常重要的。同时从表2与图3曲线对比说明并不是电感量越高越好,而应考虑它的电参数,更不能用增加线圈匝数来增加电感。因为这样会增加高频寄生电容。

(2)差模滤波电感材料的选择与共模滤波电感完全不同,因为电感与负载是串联,输入电流或输出电流直接通过电感磁芯,其交流(直流)电流很大,当然不能用高磁导率的材料。为了适应差模抗干扰滤波器的电感磁芯的需要,最初采用铁氧体或金属磁性材料开气隙增加退磁场方法,降低磁导率,增加磁芯抗饱和能力。但这对用于电源输入端的交变电流抗干扰滤波显然是很不恰当的。不仅在开气隙处有很强的交变漏磁场引起的很大辐射干扰外,还在气隙断口处产生局部的损耗而发热,导致铁氧体磁性恶化甚至消失。因为铁氧体居里温度为200℃,在此温度附近μ0降低至零,此时已失去滤波作用。再者由于磁致伸缩在气隙处产生新的机械噪声,污染环境。为此人们采用新颖的复合磁粉芯。这是目前最理想的滤波电感材料,它是将金属软磁粉末经绝缘包裹压制退火而成,它相当于把一集中的气隙分散成微小孔穴均匀分布在磁芯中,不但材料的抗饱和强度增加,而且磁芯的电阻率比原来增加几个数量级且各向同性,改变了金属磁性材料不能在高频下使用的缺点。这就是在国外所有差模滤波电感都是用磁粉芯,而不用开口铁氧体磁芯的原因。

这里选取各种性能的磁粉芯测量频率-阻抗变化曲线(见图4)。

图中的变化曲线表现出不同磁性能的电感,其阻抗与频率变化并不一样。铁粉芯SF70和55930在干扰频率2kHz时 阻 抗 基 本 不 变 , 表 示 没 有 吸 收 作 用 , 而 SF30在 小 于 60kHz时 对 信 号 也 没 有 吸 收 作 用 。 在 2MHz附 近 吸 收 迅 速 增 强 , 在 接 近 10MHz时 吸 收 最 强 , 而 SF70在 100kHz以 后 变 化 不 大 。 可 见 不 同 性 能 的 材 料 对 干 扰 信 号 的 吸 收 频 段 也 不 一 样 。 国 内 外 大 量 使 用 的 电 子 调 光 设 备 大 都 采 用 移 相 式 晶 闸 管 调 光 。 在 晶 闸 管 导 通 瞬 间 因 电 流 突 变 会 产 生 大 量 的 高 频 谐 波 而 引 起 的 电 磁 干 扰 , 不 单 严 重 影 响 音 响 设 备 、 灯 具 、 摄 录 像 等 设 备 , 还 严 重 干 扰 电 网 系 统 。 必 须 安 装 抗 干 扰 电 感 ( 美 国 Lee ColorTran,英 国 Lank,日 本 龙 田 社 RDS都 采 用 这 样 方 式 来 抑 制 干 扰 ) 。 为 方 便 起 见 , 采 用 分 析 电 流 上 升 时 间 tr来 判 断 电 感 磁 芯 的 抗 干 扰 程 度 。 不 同 材 料 的 数 据 如 表 3所 示 。

表3不同磁性材料的磁性能及电流上升波形对比

在调光灯的工业检测中抑制干扰的效果可以用电子调光器开通时的电流上升时间tr来表示。上升时间越长说明电路高次谐波成分越小,抑制效果越好。从表中不难看出国产ZW-1电感tr时间可高达450μs,而磁导率只有70。开口非晶带磁芯虽然磁导率最高(μe=800),但电流上升时间太短,只有100μs,而又有严重的机械噪声。这说明加电感后抗干扰能力并不是磁导率高的好,也不是磁导率低的好,而与选用的磁性材料材质有关。为了进一步分析,对不同材料在同样条件下测量其干扰电压,图5是英国Lank,国产ZW-1磁粉芯和通常开口磁芯的电源端干扰电压与频率曲线。

按照“电子调光设备无线电干扰允许值及测量方法”测量结果,不难看出国产ZW-1电感与英国Lank电感相比较,国产ZW-1电感抗干扰电平都在

材料BS(T)μStr(μs)电流上升波形
50NiFe磁粉芯1.3120≤150 
超微晶磁芯粉0.850200 
开口非晶带材1.3800100
英国ZW-10.975380 
国产ZW-10.970450 

f/MHz

Yz5.gif (7133 字节)

图5调光装置设备抗干扰曲线

A级标准以下,而英国Lank电感在0.16MHz~3.5MHz频段超标,而开口硅钢片制作的抗干扰电感在频段0.01MHz-1.2MHz都超标。用开口磁芯做抗干扰电感不可能达标。目前国内的调光灯大多数都用铁氧体磁环做抗干扰电感,这显然是错误的。不但没有抑制干扰反而增加干扰,因为铁氧体总是工作在饱和区。

图6是程控交换机用的100A抗干扰滤波器衰减曲线。抗干扰衰减曲线I是进口同类滤波器,其干扰电平曲线在0.01MHz~100MHz范围内干扰电平的衰减比较均匀平缓。曲线II用开口铁氧体做滤波器,当频率为0.4MHz~0.8MHz时的峰值说明对该频段的干扰信号衰减小,达不到要求。后来用美国Micrometals公司铁粉芯代替,则在0.2MHz~0.45MHz频段抗干扰能力弱(如曲线III),但要比开口铁氧体好些,仍不理想。因为对通讯电源最伤脑筋的是低频干扰。后来用专门研制的磁粉芯做成的滤波器干扰电平如曲线IV,要比曲线II、III都好,甚至优于国外同类滤波器性能。从以上的例子可以看出在研制EMI滤波器时要特别注意滤波电感选择。不但要选用适当的磁材,还要选用适合于所需衰减频段的磁性能。所以磁性材料的选取在EMI滤波器中有着举足轻重的作用。

4抗干扰滤波器的发展趋势

Yz6.gif (5768 字节)

图6 100A滤波器抗干扰曲线

当前电子线路向高速数字电路转移。高组装密度和高运算速度对EMC提出更高的要求。电子产品的微型化、多功能、移动化的发展又促使电子产品在组装方式上向表面贴装技术转移,又进一步降低干扰。同时为了提高其动态响应,降低干扰,必须力求减小供电母线的引线电感。最有效的方法是将电源直接装在负载附近,用分散供电方式(即小功率源)而不采用集中供电的形式(大功率源),这样大大减少引线的长度,有效降低辐射干扰。所以今后几年美国将大力发展小功率16W~25W低压(输出电压最低为1.2V)DC/DC开关电源。可见,片式磁性器件是微型化的关键材料之一,它可分为线绕型片式电感、叠层型片式电感、薄膜型片式电感。为此上海钢铁研究所已开始着手金属薄膜电感和薄膜变压器元件的研制。目前美国和日本的一些重要研究所都开始研究薄膜电感和薄膜变压器,并与集成元件组合制成新颖的超小型、高可靠性、高抗干扰能力的电源模块。由此可见超小型电感和变压器将是21世纪磁性元件的发展方向。

1 2 3

关键词: 滤波电感 电源抗干扰 分析 中的应用

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版