高增益LC谐振放大器的设计

时间:2012-03-28来源:网络

c.jpg


放大器的电源退耦滤波和级间耦合回路设计是个难点,同时也是重点考虑的问题,如果设计不当,则多级电路很容易产生自激振荡。电源滤波采用π型非对称电路,可以有效抑制高频信号对直流电源的影响,该滤波电路的位置很重要,须靠近晶体管集电极并处于晶体管和电源之间。级间耦合电路采用两个电容的并联,可以有效消除自激和提高电路的稳定性。在放大器输入端需要设计阻抗匹配电路,将信号源内阻与放大器输入阻抗相匹配。输出端与负载之间接匹配电路可以提高传输到负载上的功率。阻抗匹配电路的设计使用Smith圆图,采用L型匹配网络。
当采用多级电路耦合时,为了确保放大器的稳定性和选择性,实际调试时可将第一级电路的谐振频率设为稍低于15MHz,第二级电路的谐振频率调为15MHz,第三级电路的谐振频率稍高于15MHz,多级联调时用扫频仪可很快完成调试。特别要说明的是,每级放大器均需要单独设计电源滤波和退耦网络,而且每级放大电路的静态工作点均不同,需要实际调试确定。三级放大器完整的电路如图2所示。

d.jpg



3 测试结果
测试线采用一端Q9接口,一端SMA接口的高频屏蔽同轴电缆,经使用高频信号发生器AS1054和示波器TDS2012B测试,当输入信号15MHz,1mVrms时,三级放大器的电压增益分别是25dB、28dB和28dB,200Ω负载上的电压增益可达81dB,改变输入信号幅度,输出电压最大可达1V rms而无明显的波形失真,此时的电源功耗仅为75mW。用数字合成扫频仪SP31000测试放大器的谐振曲线,带宽280kHz,矩形系数为4.8,表明放大器具有低功耗、高增益、良好的稳定性和较好的选择性。

1 2

关键词: 增益 LC谐振 放大器

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版