汽车无级自动变速系统设计

时间:2012-02-10来源:网络

单片机是采用美国Microchip公司2002年3月推出的单片PIC18F452,它在功能上可以满足TCU的要求,在性能上它具有低功耗、工作温度范围宽,并且可在较低的电压下正常工作,特别适用于汽车电器。检测电路分为脉冲检测、开关量检测以及模拟量检测。脉冲检测又分为脉冲计数和脉冲宽度检测。如发动转速、输入、输出轴转速的测量是采用脉冲计数方式。节气门开度则是采用脉冲宽度测量的方式。

模拟量的测量主要由滤波电路、放大电路组成。A/D转换是采用单片机内自带的10位A/D转换器。变速箱的变比控制是由直流电动机驱动的。在TCU中是由4支MOSFET组成的H型电路实现对电动机的正反转PWM控制。电磁离合器的电流也是通过MOSFET驱动的。在驱动电路中除主开关元件、续流二极管外还有保护电路和电流检测电路。

通讯接口的作用主要是观测TCU的工作状态,对检测传感器的故障分析以及传感器资源的共享。

3 TCU控制系统程序框图

TCU控制系统主程序框图如图3所示。程序首先对内部RAM进行分配,然后对各功能模块如Administrator/D转换器、定时器、PWM波形发生器等进行初始化。变速箱的变比在汽车每次时应处于最小变比的位置,因此在每次停车时应将变速箱归位,汽车起动后首先检测各参数,如档位开关、发动机转速、节气门开度、变速箱输入、输出轴转速等。这些参数是控制电磁离合器电流和电动机状态的依据。当需要增加变速箱的变比时,TCU控制电机正转,反之控制电机反转。电磁离合器的控制采用电流增量控制方式。它的控制好坏,直接影响汽车运行的平稳性和经济性。

图3 TCU控制系统主程序框图

4 运行结果

图4和图5为汽车实际运行时电磁离合器电流和变速箱变比的关系曲线。其中图4为汽车速度从零急加速到120KM/H,到120KM/H后松开油门减速到零时的电磁离合器电流与发动机转速、节气门开度和输入轴转速之间的曲线图。由图可以看出节气门急加到最大后保持一段时间,电磁离合器电流同步紧跟着加,当加到峰值时,继续保持不变,发动机转速也加到一个值保持不变,从图中还可看出电磁离合器电流在增加的过程中,不断在抖动,可知在上升过程中电磁离合器在不断在打滑,在此段时间内发动机转速与输入轴转速不成比例,直到电磁离合器到一个稳定的值后才保持一定的比例关系。当节气门全松开后,电磁离合器电流随之下降到一个小值后保持不变,直到车速达到使变速箱处于由齿轮变速为主时,电磁离合器电流继续减小,当车速为零时,电磁离合器电流随之减小到零。由图4可知,当车速在从零加到120KM/H,电磁离合器电流为零,输入轴转速也慢慢减为零。在整个过程中,我们可看到,节气门开度变化率代表了驾驶员的意图,电磁离合器电流主要由节气门开度来决定。电磁离合器的打滑程度决定了发动机转速和输入轴转速的之间的传输比例关系。

注:深蓝—输入轴转速,黄—节气门开度,紫红—发动机转速,浅蓝—电磁离合器电流

图4 电机加速时的电磁离合器电流关系曲线

图5为汽车速度从零加到120KM/H后又由120KM/H减到零时,位置传感器与输入轴转速、输出轴转速和电机电压之间的关系曲线。由图可知,当汽车速度在从零加到120KM/H过程中,位置传感器变比由最大开始下调直到变为最小,此时对应电机反转。当车速由120KM/H开始下降时位置传感器先保持不变,此时电机不转,同时输入轴转速和输出转速成比例的下降,当车速达到一定的值时位置传感器速比由最小开始上调直到为最大值,此时电机反转(因测试时采用的电流传感器为单方向的,所以图中没有反映出反向电流)。输入轴转速和输出轴转速不成比例的下降直至为零。从图5可以看到车速在上升时,位置传感器速比的测试值不断地减小(对应的转速比增大)。反之,车速在下降的过程中,当车速小于某一值时测试值增加。从而实现了变速箱变比的自动调整。

注:黄—位置传感器,深蓝—输入轴转速,紫红—输出轴转速,浅蓝—电机电压

图5 汽车减速时的变速箱变比——转速曲线

通过运行结果可以看出所设计的TCU可以实现电磁离合器转矩和变速箱变比的自动控制。从实际运行感觉看,起动和停止以及加减速过程平稳。并且具有较好的经济性。

1 2

关键词: TCU 车辆自动 电控技术

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版