一种具有过温和短路保护的低压LDO设计

时间:2011-02-11来源:网络


2 LDO的整体设计与仿真
2.1 LDO整体架构的电路设计

该电路从总体上可划分为电压基准源(BANDGAP),误差放大器(ERR-AMP),过温保护电路(OTP),短路保护电路(SHD),使能控制和驱动模块(调整管、反馈网络,补偿元件)等几个模块组成,其中输出电容是外置元件,用于频率补偿及改善瞬态特性。其整体框图如图10所示。其中使能信号EN通过反相器得到两个反相的信号以控制不同的电路。


2.2 LDO整体架构的版图设计
本文所设计的LDO电路基于UMC MIXED MODE CMOS 0.18μm工艺,所用到的器件主要有:
NMOS,PMOS,P+POLY电阻,Metal1-Metal2电容以及PNP管。其中PNP管是CMOS工艺中寄生的纵向PNP,LDO整体电路的版图可分为带隙基准、运放、比较器等几个主要模块,其中大电阻位于两侧,MOS电容位于右下方。整体版图如图11所示。


2.3 LDO整体架构的仿真
根据各个模块的设计指标和整体的功能要求,利用HSPICE CMOS 0.18μm工艺库对整体电路的各种主要性能进行了详细的仿真,为了获得较好的整体性能,各个设计指标之间进行了优化和折中,下面依次给出各种性能相关的仿真结果。
(1)LDO频率响应仿真。本文采用的补偿方法是通过输出电容产生的ESR电阻产生的零点来实现频率补偿的。从图12的仿真结果中可以看出,电路的低频增益为88 dB,电路相位裕度为65°,具有良好的稳定性。


(2)负载瞬态响应仿真。图13所示仿真结果表明,负载电流在0~300 mA变化时,其输出电压的变化范围小于20 mV,具有良好的负载瞬态特性,完全符合设计指标的要求。


(3)线性瞬态响应仿真。线性瞬态响应描述的是当输入电压变化时,输出电压保持恒定的能力。它是一个在大信号范围内定义的参数。如图14所示。

3 结语
本文采用的补偿方法是通过输出电容产生的ESR电阻产生的零点来实现频率补偿的。从上面的仿真结果中可以看出,电路的低频增益为88 dB,电路相位裕度为65°,具有良好的稳定性;负载电流在0~300 mA变化时,其输出电压的变化范围小于20 mV,具有良好的负载瞬态特性;Vin在1.2~2.0 V之间变化时,其输出电压的变化为150 mV,线性瞬态特性满足了设计指标的要求。

1 2 3

关键词: 驱动模块

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版