基于FPGA的小型星载非制冷红外成像系统

时间:2010-11-16来源:网络

  2 各模块的设计与实现

  2.1 CCD探测器电路设计与实现

  根据内编队重力场卫星设计的红外成像环境温度(300 K)和黑体维恩位移定律,可得到红外光谱辐照度的峰值波长为9.66 μm,处于长波红外波段,因此可以选用典型波长为8 μm~14 μm的红外焦平面阵列探测器。在波长范围确定的情况下,综合考虑航天运用上高可靠性、低功耗、低噪声和小型化等方面的要求,选取了ULIS公司生产的UL 03 16 2非制冷型长红外微型测辐射热仪[4]。与之相匹配的红外镜头委托相关公司设计了视场角120°、焦距3 mm、光圈F数为1的广角镜头。UL 03 16 2微型测辐射热仪焦平面阵列包含两部分:由384×288个单元组成,采用多晶硅工艺制作的电阻型两维探测阵列;连接到探测器阵列的硅工艺读出集成电路(ROIC)。

  根据探测器芯片资料,探测器正常工作所需的电源和各项偏置电压参数要求如表1所示。

基于FPGA的小型星载非制冷红外成像系统

  由表1可知,VDDA和VDDL为供电电源,选用了转换效率高、稳定性好的LT1086-5.0和LT1086-3.3电源芯片,它可提供1.5 A的最大电流。4个精密基准电压源需要为探测器提供低噪声的偏置电压(VBUS、GFID、VSK和GSK),比较此类芯片的特性,采用AD584配合精密可调电阻产生VBUS、GFID和VSK三种电压,采用LM4041配合精密可调电阻产生GSK电压。为了使电源噪声达到上述要求,设计了放大器去噪电路,采用低噪声精密放大器OP270,它在1 kHz下能达到5 nV的电压稳定精度,温度漂移为1 ?滋V/K。图2以VSK(5.475 V)电压为例给出了具体电路原理图,其他电压的电路原理基本类似。

基于FPGA的小型星载非制冷红外成像系统

  探测器借助不同的外部时钟和偏置电压,内部时序器为完全同步的ROIC操作提供所有必要的内部信号,所有内部脉冲都是通过主时钟的整数倍频得到的。内部时序器的操作仅需要以下时钟[4]:(1)主时钟(MC);(2)复位信号;(3)积分信号。VIDEO信号在每行积分完成的18.5个时钟周期后开始输出,与之相应的AD采样时钟可设置为积分完成后的19个周期开始,与主时钟同步。上述信号的时序关系可在FPGA内部编程实现。

1 2 3 4

关键词: 图像处理 FPGA 成像系统 红外焦平面阵列

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版