用高性能ADC拓展软件定义无线电应用领域

时间:2010-11-18来源:网络

  超高速ADC支持电路

  要利用ADC12D1800这样的数据转换器获得高性能表现,必须保证支持电路的性能与数据转换器本身相当。支持电路的要素包括:高性能,低抖动时钟源;用来驱动ADC输入的高线性、低噪声放大器或平衡-非平衡变压器;用来采集和处理Gbps级数据的高速FPGA或ASIC技术。

  产生GHz级的时钟信号

  数据转换系统中最重要的子电路之一就是时钟源,时钟信号的精度直接影响转换器的动态性能。时钟源必须具有非常微小的时钟抖动和相位噪声。一个完美的时钟发生器应该总是在相同的时间间隔发出时钟沿。而在实际操作中,时钟沿到来的时间间隔总是不断变化的。由于时钟信号的不确定性,采样波形的信噪比(SNR)可能不尽如人意。时序不确定性/时钟抖动越严重,对ADC基底噪声的影响越恶劣,因此信噪比越低。采样时钟信号的谐波也会混杂在模拟输入信号中,导致互调失真(IMD)和噪声功率比(NPR)性能下降。因此,需要具有出色杂散噪声性能的低抖动时钟源。抖动产生的噪声未超过量化噪声(1/2LSB)时,来自所有信号源的可容忍最大时钟抖动(Tj)可由以下简单公式进行计算:


  如果输入电压(VIN)优化后等于ADC的满量程电压(VINFSR),那么时钟抖动要求便成为ADC分辨率(N位)和输入采样频率(fin)的一个影响因素。可用以下公式计算满足期望信噪比规格所要求的时钟抖动:


  当输入频率为奈奎斯特(Nyquist)采样率(1.8GSPS转换率对应的输入频率为900MHz),60dB信噪比对应的整体时钟抖动为180fs。这种极低的时钟抖动可用LMX2541配合适当的基准振荡器,或者用最高频率1.0GSPS的LMK04000系列的ADC12D1000来实现。这两种方案的杂散谐波失真性能都不会限制模数转换器的动态性能。表1列出了关于美国国家半导体LMK0X000时钟产品的详细信息。

  模拟输入电路只有两种组件可供选择:宽带差分放大器或者平衡-不平衡变压器(要实现最优动态性能,模拟输入必须为差分驱动方式)。由于变压器是无源器件,因此没有任何功耗。输入功率基本等于输出功率,只是在变压器绕组上有轻微损耗。由于变压器是无源器件,因此失真通常小于差分放大器。但是在使用变压器时,难以在维持阻抗与ADC输入匹配的同时控制信道增益。此外,变压器比高性能差分放大器更容易发生增益和相位失配。放大器可以提供高增益(固定和可变的)、直流耦合和ADC输入保护。带有输出箝位功能的放大器对防止过高的模拟输入非常有帮助。在变压器输出端使用快速箝位二极管通常不可行,因为增加的这个电容将使信号带宽和动态性能降低。

  ADC12D1800的满量程差分输入电压为0.8V p-p。虽然不会立刻体现出来,但这个相对较小的满量程范围有它潜在的好处。其它超高速ADC依靠较宽的输入VINFSR(>2V p-p)电压来试图获得尽可能高的信噪比。尽管理论上可行,但实际上一个2V p-p的高频信号通过平衡-非平衡变压器或者差分放大器之后很难保持低失真。当信号幅值增加,尤其是信号频率也提高时,幅值与相位匹配将变差。而且幅值越高,谐波和非谐波失真也会越严重。

  同样值得注意的是,由于要求的时钟源抖动性能和VIN/VINFSR之比相关,通过使模拟输入低于标称VINFSR来最大化放大器或平衡-非平衡的失真性能,可以补偿高VINFSR值的影响,这将会对时钟源产生更加严格的要求。推荐用LMH6554和LMH6517这两款放大器来驱动ADC12D1X00系列ADC。

1 2 3

关键词: ADC 性能 软件定义无线电 应用领域

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版