光学传感器优于电气传感器

时间:2010-10-20来源:电子产品世界

 

  一般的FBG传感器会拥有几个纳米的工作波长范围,所以光学探询器必须能够完成分辨率为几个皮米甚至更小的测量 – 一个相当小的量级。探询FBG光栅传感器可以有几种方法。干涉计是通常运用的实验室设备,它可以提供相当高分辨率的光谱分析。但是,这些仪器一般来说非常昂贵,体积庞大并且不够坚固,所以在一些涉及各种结构的现场监测的应用中,如风机叶片,桥梁,水管以及大坝等环境的监测中,这些仪器都不适用。

  一种更加坚固的方法是引入了电荷耦合器件 (charge-coupled device - CCD) 以及固定的分散性单元,一般是指波长位置转换。

  在这种方法中,会用一个广谱的光源照射FBG传感器 (或者一系列FBG传感器)。这些反射光束会通过一个分散性单元,分散性单元会将波长不同的反射光束分别分配到电荷耦合器件(CCD)表面不同的位置上去。如下图5所示。

 

  这种方法可以快速并且同时地对挂接在光纤上的所有FBG传感器进行测量,但是它只提供了非常有限的分辨率以及信噪比 (SNR)。举例来说,如果我们希望在80纳米的波长范围中实现1皮米的分辨率,那么我们需要一个包含80,000个像素点的线性CCD器件,这个像素指标已经比目前在市面上能够找到的最好的线性CCD器件 (截至2010年7月) 的指标高出了10倍以上。另外,因为广谱光源的能量是被分散到一个很广的波长范围中,所以FBG反射光束的能量会非常小,有时候甚至会给测量带来困难。

  目前最流行的方法是利用一个可调法珀滤波器来创造一束具有高能量,并且能够快速扫频的激光源来代替传统的广谱的光源。可调的激光源将能量集中在一个很窄的波长范围里面,提供了一个具有很高信噪比的高能量的光源。这种体系结构提供的高光学功率让使用一条光纤挂载多个光学通道成为可能,这样就能有效地减少多通道探询器的成本并且降低系统的复杂度。基于这种可调激光架构的探询器可以在一个相对大的波长范围里面以很窄的光谱带进行扫描,另一方面,一台光探测器将与这个扫描同步,测量从FBG传感器反射回来的激光束。当可调激光器发射的激光波长与FBG传感器的布拉格波长吻合的时候,光探测器就能测量到相应的响应。该响应发生的时候可调激光的波长就对应了此时FBG传感器处测得的温度以及/或者应变,如图 6所示。

 

  使用这种方法进行探询可以达到大概1皮米的精度,对应到传统FBG传感器的精度即是约1.2微应变(FBG应变传感器)或约0.1摄氏度(FBG温度传感器)。因为可调激光源法相对于其它的方法来说具有很高的光学功率,所以这种探询法还可以适用于光纤长度更大 (超过10千米) 的测量应用中。

1 2 3 4

关键词: FBG 光学传感器

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版