基于MAXQ3120微控制器的电表(EM)参考设计

时间:2010-09-21来源:网络



定制这个程序提供两种选项。你可以选择改变disp.Item的赋值,以及改变程序中它们的选择顺序,或者你可以选择完全替换掉该程序。后一种选择可能更好。如果为可能显示的每个条目指定一个独立位,或为可显示条目分配一个列表索引,显然这样的条目选择结构更加灵活。选择上面的结构是因为它需要的RAM空间最小。

添加寄存器

DL/T 645规定了大量寄存器,用于控制电表运行的各个方面。每个寄存器由一个16位寄存器号指定。在参考设计中,增加了很多寄存器来控制电表运行的各个方面;在代码中给出了这些寄存器的说明。本讨论内容提供了必要的信息,以便通过扩展寄存器映射从电表中获取更多信息,或者控制新的电表运行特性。

寄存器管理器如何工作

所有任务都不能挂起正常的任务轮操作,寄存器管理器任务要遵循这一原则有很大难度。这是因为寄存器管理器是唯一能够读/写EEPROM的任务,并且EEPROM写操作需要(相对)较长的时间D几个毫秒。因为每20ms (60Hz环境下是16.7ms)就要为DSP程序提供处理器时间,寄存器管理器在EEPROM写周期过程中,绝不允许将系统挂起几十毫秒的。

要解决EEPROM写入时间问题,一个显而易见的方法是将I2C程序置为中断处理方式。这样一来,寄存器管理器可以启动一个EEPROM传输过程,随即返回主函数入口main();之后每次被调用时,寄存器管理器都会通过检查EEPROM子系统的状态,来确定任务是否已经完成。采用这种方案带来一个问题,ADC周期非常短,以至于ADC中断服务程序需要独占中断子系统。因此,必须采取一些其它保障机制。

解决的方法是采用一个全局标志位:EEPROMOpPending。当这个标志位为低时,任务轮实质上是一个无限循环过程,反复调用系统中的每一个任务。当标志位为高时,任务轮被调用时执行一次并返回,并不调用寄存器管理器。这样有什么帮助吗?

当寄存器管理器需要执行一个耗时很长的功能时,它启动这个功能并通过轮询来确定其是否完成。在轮询期间,寄存器管理器将EEPROMOpPending置为高,并递归调用任务轮。下面的代码给出了一个实际例子:

01: uint8 ReadEEPROM(uint16 Address, uint8 Length, uint8 *pData)
02: {
03: int i;
04: g_MessageBoard.EEPROMOpPending = 1;
05: for(i=0; ilength; i++)
06: {
07: if(i>0)SpinTaskWheel();
08: eeprom_address = Address++;
09: while(eeprom_read_byte())
10: S
pinTaskWheel();
11: *pData++ = eeprom_data;
12: } // for
13: g_MessageBoard.EEPROMOpPending = 0;
14: return 1;
15: }

在上面的第4行,EEPROMOpPending标志位被置为高。在第7和10行中,SpinTaskWheel被调用。如果EEPROM标志位为高时调用任务轮,则SpinTaskWheel函数运行一次,并在不调用寄存器管理器的情况下返回。这样,即使由于寄存器管理器等候EEPROM完成操作而停止下来,电表的其它部分仍可持续正常运行。

哪些任务知晓这些寄存器?

只有两个任务知道寄存器号:寄存器管理器和消息译码器。这些程序中,通常只需要对寄存器管理器进行修改。消息译码器识别出与口令管理和其它监控功能有关的寄存器,并且必须在采用正常处理规则之前获取这些信息。因此,要构建自己的寄存器,只需要熟悉寄存器管理器。 三类寄存器

通常,有三类寄存器:只读、读写和具有额外功能的读写寄存器。只读寄存器的一个例子是B611,RMS Volts、phase A。主机向这个寄存器写数据是不能执行的;实际上,如果电表收到写数据会将其丢弃。而且,多数只读寄存器都不在EEPROM中:通常,在线计算这些寄存器的结果,并根据需要报告结果。

读写寄存器的一个例子是C032,Meter Number (电表号)。写入数值不会对电表操作产生任何影响,而且可以随时提取该数据。最后,一个具有额外功能的读写寄存器例子是C030,Meter Constant, active (有效电表常数)。当这个寄存器被写入数据时,寄存器管理器不仅要更新EEPROM,同时也要更新DSP程序使用的电表常数。

哪些任务需要寄存器信息?

下表列出了需要寄存器信息的任务。



通常,你主要考虑添加可通过消息译码器访问的寄存器。你可以增加用于显示的寄存器(或者用于其它任务的寄存器,但是依据惯例,你会主要考虑那些可通过通信端口检索的寄存器)。

读写寄存器

首先考虑第一种情况,即存储和读取无额外功能的读写寄存器。为了添加一个存储于EEPROM内的寄存器,你必须添加两处信息:MAXQ3120RD.h文件和寄存器管理器中的ProcessRegisterNumber程序。

MAXQ3120RD.h包含一个由typedef定义的名为EEPROM_DATA的数据类型。这个定义并没有被真正实例化;而仅仅是作为模板,用于定义数据如何存入EEPROM。在EEPROM_DATA定义的下面,还定义了两个宏,用来返回两个值,分别是结构中某成员的偏移地址和某成员占用的字节数。定义新寄存器的第一步,是在结构中添加成员(最好是在尾部),从而为寄存器分配EEPROM存储空间。

下一步是定义寄存器号。这需要编辑寄存器管理器中定义的RegParmTable结构。这个表包含了电表中定义的每个寄存器,并按编号排序。每个成员包括:

寄存器号,16位无符号值。

物理数据单元编号,用于计算实际寄存器值。例如,寄存器9110请求当月总的正向无功用电量。它是两个电能累加器的和:包括1象限的用电量和4象限的用电量。因此,物理单元的个数是二。寄存器管理器必须提取指定单元(CurrentQuadrant1AccumTariff)和下一个单元(CurrentQuadrant4AccumTariff)的数据,并求和以获得所需信息。

每个单元的长度,以字节为单位。

存储的数据类型:INT_REG,表示寄存器包含被视为整数的二进制数据;

BCD_REG,表示寄存器包含的是传输前无需进一步转换的BCD码数据;或者MDH_REG,表示寄存器包含的是日期信息(月:日:小时)。

EEPROM中数据的偏移量(单位为字节数)。

为了节约处理时间,ProcessRegisterNumber程序采用二元搜索算法找出寄存器地址。因此,表格保持排序状态是非常重要的。如果寄存器表变得无序,结果就无法预料了。

一旦表格被更新,新的寄存器可以通过通信通道进行读写。电表到底如何处理该信息,是下一部分的主要内容。

具有额外功能的读写寄存器

还有一种应用情况,即你想让一个写事件触发额外的功能。为了达到这种效果,必须让寄存器管理器向额外任务发送一个消息,或者更新执行额外功能所涉及的RAM内容。作为样例说明,可在寄存器管理器中搜索C030,你会找到下面这段代码:

switch(Register.Word)
{
case 0xC030: // Meter constant, real
action_value = 0;
for(i=4; i>1; i--)
{
action_value *= 100;
action_value += (g_CommBuffer.Message[ i] 0xf) +
(g_CommBuffer.Message [ i] >> 4) * 10;
}
set_E_pulse(action_value); // this will set E_pulse
break;

1 2 3 4

关键词: 参考 设计 EM 电表 MAXQ3120 控制器 基于

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版