PI高效率充电适配器设计解决方案

时间:2010-02-26来源:电子元件技术网

  图2是一款5W通用输入恒压/恒流(CV/CC)充电器/适配器的电路设计图。本设计适用于手机电池充电器、USB充电器或任何有恒压/恒流特性要求的应用。该电路可为最高1A的负载提供5V恒流输出,精度为±5%。当需要更大负载时,电源将进入恒流模式,输出电压降低,使输出电流维持在1A±10%。

  

 

  图2: 5W CV/CC通用输入充电器电源电路图

  这个电源电路是采用PI的LinkSwitch-II系列产品LNK616PG(U1)而设计的反激式电源。它不是传统的PWM控制器,而是采用开/关控制来维持恒压(CV)阶段的稳压。它通过跳过开关周期来维持输出功率水平,并通过调节使能与禁止开关周期的比值和初级限流点来维持稳压。这种控制方法在充电器设计中具有诸多独特优势。随着负载电流的增大,电流限流点也将升高,跳过的周期也越来越少,达到最大输出功率点时将不再跳过任何开关周期。当需要进一步提高功率时,输出电压会随之下降。控制器检测到压降后进入恒流模式。 在此模式下,随着电流需求的增大,开关频率将下降,从而实现线性恒流(CC)输出。图3给出了该电路的电流及电压性能。

  

 

  本设计中有几大要素可以实现高效率和低成本。变压器T1是其中的一个关键要素,其设计主要由U1中开关元件的性能来决定。LinkSwitch-II器件集成了700V功率MOSFET用作主要开关元件,这样可以使工作频率高达85kHz,几乎是具有竞争性的BJT设计最高工作频率45kHz的两倍。频率越高,就越容易减小变压器尺寸及其层数,从而降低变压器中的电容开关损耗。为降低变压器可能会产生的音频噪音,控制最大磁通密度非常必要。在每个周期开始时,U1中的MOSFET导通,流经T1初级绕组的电流则增大至LinkSwitch-II控制电路所允许的最大值。达到此值后,MOSFET关断,储存在T1中的能量会在磁场下降时转移至次级绕组。轻载条件下,初级限流点下降,从而降低变压器磁通密度。通过限流点控制、调整使能与禁止开关周期的比值并根据输出负载情况减低开关损耗,可以优化转换器在整个负载范围内的效率。

  T1内的抽头次级绕组5-3-2-NC具有三种功能。绕组2-5可通过二极管D6向U1提供低压电源。从低压次级侧获取功率,而不是在初级侧降低电压,这样可以使电源在230VAC时空载功耗不超过50mW。

  绕组2-3可向U1的反馈(FB)输入提供反馈信号。这个控制引脚可以根据偏置绕组的反激电压来调节恒压模式下的输出电压和恒流模式下的输出电流。采用这种设计后,不仅可以省去输出路径中的检测电阻,还可以省去一个光耦器和次级控制电路,从而大幅简化电源设计。这种控制技术还能够自动补偿变压器电感容差和内部参数容差随输入电压的变化。

  变压器次级中的最后一个元素是绕组2-NC。这一设计是PI的E-ShieldTM技术的实现。此举可以改善EMI裕量,省去铜箔屏蔽层。

  另一个需要考虑的关键元件是整流二极管D7。该二极管的性能对效率有重要影响,因为它要传送整个DC负载电流。二极管将要承受的峰值反向电压由初级开关元件的额定电压来决定。其他同类设计方案使用额定峰值电压为600V的开关,这些解决方案要求使用低反射输出电压(VOR),并且D7必须选用60V肖特基二极管。LinkSwitch-II中集成的MOSFET能够维持700V的电压,使VOR取较高值。这样可以降低D7上的应力,从而能选用40V肖特基二极管。40V肖特基二极管不仅成本低廉,而且在2A时的正向导通压降只有0.5V,而60V肖特基二极管的正向导通压降为0.7V。这样可减少0.4W的峰值功耗,将效率提高5%。

1 2 3

关键词: PI 充电适配器 变压器 整流二极管

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版