基于DDS技术的杂散分析及抑制方法

时间:2009-09-21来源:网络

2.1 相位截断引入的杂散

在DDS中,一般相位累加器的位数N大于ROM的寻址位数P,因此累加器的输出寻址

其N一P个低位就必须舍掉,这样就不可避免地产生相位误差,称为相位截断误差,表现在输出频谱上就是杂散分量。因为 DDS输出信号通常是正弦信号,因此它的相位截断具有明显的周期性。这相当于周期性的引入一个截断误差,最终影响就是输出信号带有一定的谐波分量。相位截断并不是每个输出点都产生杂散。它们的大小取决于三个因素:累加器的位数N,寻址位数P,频率控制字FCW。杂散分量分布在基频两边,是DDS杂散的主要来源。

2.2 幅度量化引入的杂散

由于DDS内部波形存储器中存储的正弦幅度值是用二进制表示的,对于越过存储器字长的正弦幅度值必须进行量化处理,这样就引人了量化误差。幅度量化主要有两种方式,即舍入量化和截尾量化,实际中DDS多采用舍入量化方式。一般地,幅度量化引人的杂散水平低于相位截断和 DAC非理想转换特性所引起的杂散水平。

2.3 DAC转换引入的杂散

DAC转换带来的杂散主要包括DAC非线性带来的杂散和DAC毛刺引起的杂散。由于DAC非线性的存在,使得查找表所得的幅度序列从DAC的输入到输出要经过一个非线性的过程,加之DDS是一个采样系统,产生的谐波分量会以采样频率为周期搬移。另外,DAC的有限分辨位数,D/A转换过程中的瞬间毛刺,时钟泄露,转换速率受限等,也会在数模转换中产生了大量杂散频率分量。

3 改善DDS杂散的方法

全数字结构给DDS带来输出带宽和杂散的不足。目前,降低DDS输出杂散的方法主要有以下几种:

3.1 采用抖动注入技术

由前面的分析可知,相位截断误差给输出信号引入了周期性的杂散,因此设法破坏杂散的周期性及其与信号的相关性,可以有效地抑制相位截断带来的误差。抖动注入技术是基于打破相位截断误差周期性的原理工作的,采用抖动注入后的杂散抑制可达到与增加2bit相位寻址相同的效果。抖动注入采用加入满足一定统计特性的扰动信号来打破误差信号序列周期性,将具有较大幅度的单根杂散信号谱线的功率在较宽的频率范围内进行平均来改善总的信号频谱质量。根据抖动注入的位置不同,可有频率控制字加扰、R0M寻址加扰、幅度加扰,根据抖动注入的误差对象不同,由相位截断误差加扰和幅度量化误差加扰。C.E.Wheatly提出了一种针对相位截断误差的抖动注入方法,在每次累加器溢出时,产生一个随机整数加到累加器上,使相位累加器的溢出随机性的提前,从而打破周期性,抑制了杂散,但增加了背景噪声。

3.2 ROM幅度表压缩

DDS是通过查表将相位转换为幅度值,如果能够将幅度表进行压缩就相当于增加了R0M数据寻址位数,DDS输出频谱将进一步得到改善。各国学者对此进行了研究并提出了各种压缩算法,利用三角函数的恒等变换,将一个大的R0M分成几个小R0M,通过逻辑控制电路实现对sin 的近似。还可以利用弦信号的波形具有四分之一对称性,R0M表中只需存储[0,丌/2]的波形,在电路中利用相位的最高位控制输出波形的符号,次高位控制 R0M表的寻址,对相位和幅度进行适当的翻转便可得到整周期波形,R0M表压缩比4:1。在成功压缩了R0M表的同时也带来了一些缺点,如逻辑控制电路复杂、实时性下降等。

3.3 PLL+DDS法

如前所述,DDS技术具有频率分辨率高,频率捷变速度快,变频相位连续等优点,但带宽和杂波抑制较差,而PLL频率合成技术具有宽带、高频率、频谱质量好,对杂散抑制较强等优点,但其频率捷变速度较慢。所以,在一些信号捷变速度、带宽,频谱质量要求相对折中的电路中,结合PLL频率合成技术与DDS 技术的结合,将是一种解决DDS杂散的理想解决方案。

1 2 3 4

关键词: DDS 杂散分析 方法

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版