以更低的成本和更高的安全性来维护公共铁轨

时间:2009-07-10来源:网络

采用智能而强大的LabVIEW滤波器查找缺陷

智能的LabVIEW滤波器审查纵向数据以找到有意义的症状。起伏数据则通过快速傅里叶变换( FFT )分析进行检测,以便监视纵向形貌的特征波长。通过比较被测形貌与事先存储的图案以及对铁轨与车轮机械接触的仿真来跟踪。裂缝呈现出显著的瞬变特性,因此可以通过区分移动数据窗口来发现。而倾角形貌的独特振动模式则通过持续运行和评估的分析模型来进行定位。

由此产生的症状信息也被输入到相关“超级算法”中进行运算。在这里,信息或者被进一步减少,或者从被测数据中提取出额外的高层次信息。例如,一个倾斜指示数据如果没有辅以铁轨表面的相关信号峰值,就被解释为毫无意义而丢弃。另一方面,指示出明显磨损和纵向裂缝的横截面形貌数据将触发一次告警。

用于铁轨横截面评估的主要技术是将被测数据与参考基准进行比较。基于矢量数学的算法和随机方法相结合,可覆盖两个形貌数据,实现重要特征的计算。纵向和垂直偏差直接指明磨损情况(图9)。

图9:智能横截面分析算法充分利用Blackfin处理器的速度和性能,可在现场实时地揭示不规则之处。

其它参数包括剩余头端高度、准确而工整的轨道半径(图10),或者有源、封闭式轨道道岔的间隔。保持在道岔容差范围内是一个关键需求,这可避免高速列车经过道岔时脱轨的危险性。铁路运营公司负责对这些道岔进行监控。

图10:确定轨道半径需要复杂的数学函数。

铁路工程师们可以调整滤波器参数容限窗口,以便将“伪报警”与显著影响乘客舒适度和运输安全性的真正的铁轨缺陷分隔开。

在数字地图上查明缺陷

内嵌在数据中的GPS信息有助于在数字地图上查明被定位的缺陷。这一地理信息增加了有关铁路热点位置的重要知识和新的环境信息,如大幅度的弯道、道岔和车站。这种“Easy-GIS”地理信息系统已通过LabVIEW的图像处理功能得到实现。现存的重要区域位图,例如一座城市,被细分为一个个单一区块,每个区块都有精确的地图坐标。当铁路工程师查看一系列缺陷时,LabVIEW从硬盘向内存中不断加载相应的区块并将它们组合成单个JPEG图片。然后此图片被复制到LabVIEW曲线图表指示器内,并用数字光标准确地指向到缺陷的位置。

将结果分发给其它应用程序

数据结果最后被转移到更高级别的应用程序中。诸如磨损和孔洞等关键缺陷的几何形貌数据可以输入标准的CAD系统中进行进一步的分析。这里采用的是Drawing-eXchange(文件)格式(DXF)。

与外部数据库管理系统的连接通过ActiveX数据对象(ADO)建立的,它使用通用数据链接(UDL)连接类型和路径。一套高层次的虚拟仪器(VI)使数据平台能执行最常见的数据库任务,如寻址表格和数据交换。

VAG纽伦堡运输公司采用一个Microsoft Access数据库中来维护一个关键的预定义位置数据矩阵,该数据库随参数变化而不断刷新。某些铁路热点一旦超过容限范围,系统就会创建一个电子维修计划并配置到维修机器中的测量设备中。

苏黎世公共运输公司(Verkehrsbetriebe Zürich,VBZ)的维护理念依靠一种带有内置MS Access数据库的商业地理信息系统工具。只要按一个按钮,所有基础设施,包括铁路区段、车站、道岔等都会被列出,并能在一幅代表城市整个有轨电车网络的地图中可视化显示。和纽伦堡的例子一样,作为短期和长期维护理念的重要组成部分,铁轨的状态也被连续监测。LabVIEW平台借助ActiveX和NET机制与这个地理信息系统工具连接。

解决问题

从IT环境反馈的维修计划被下载到作为质量设置点的维修机器中。两个Blackfin处理器支持维护团队迅速而系统地维修已磨损或存在缺陷的铁轨区段,通过若干次磨削使铁轨恢复其原来的形貌。

其中一个Blackfin处理器“掌管”多功能键盘、显示铁轨情况的两个TFT液晶显示器和移动存储器。两个激光扫描仪以20Hz的频率连续捕获瞬态横截面信息,并通过CAN(控制器区域网络)将数据实时传送给CPU。该处理器还负责计算与参考数据的偏差,将新的维修点发送给由另一个Blackfin处理器控制的底部磨削机。

该磨削机总共由六个独立的磨削柱构成。每个磨削柱所带的基于流体静力学的执行部件拥有于有三个自由度:首先是在铁轨头端的内部、外部或中间横向移动;然后,针对最坏情况的偏差进行旋转磨削;最后下移直至触碰到铁轨头端,就开始磨削。Blackfin处理器对这18项动作进行同步控制,采用脉宽调制(PWM)信号来驱动阀门以便控制液压执行部件。此外,在此定位过程中,6个旋转传感器、6个转换测量仪、18个非接触式位置开关、6个压力传感器持续受到监测。这一过程使用传统的方法需要几分钟,而现在磨削柱可在几秒钟内自动放置。

最后,磨削柱开始打磨多余的材料(图11 )。安全和坚固的外壳保护电子电路和传感器免受四处飞溅的火花、扬起的灰尘、湿气和热气的影响。

图11:电子维修计划被配置到维修机器中,机器在铁轨上用磨削的方式解决缺陷问题。

经过磨削过程后,通过将一套形貌测量数据加载回使用移动存储介质的IT环境,质量得到保证。

结束语

铁路和有轨电车的系统维护理念通过采用数字嵌入式设计被带入一个新阶段。在轨道上利用低层次的测量与控制技术,在中央定位系统采用高层次的数据挖掘和分析技术,就可实现轨道维护的最理想和具有成本效益的集成解决方案。

利用性能和功能可扩展的Blackfin处理器,基于上述测量/维护理念的测量设备和车辆已能达到轨道固有恶劣环境所要求的关键的实时性能和可靠性。

缺陷的定位,这种设计的高层次数据分析和可视化所需要的故障定位已可在LabVIEW环境下实现,不仅可开发复杂的数学滤波器算法,而且还能满足将现场设备与IT环境联网所带来的各种不同的连接性挑战。简单易用的LabVIEW再一次实现了具有最佳复用和重构可能性的高端设计。

LabVIEW嵌入式技术,特别是当专门与Blackfin处理器配合使用时,现在为以往用ASM或C / C + +语言编写的算法打开了范例转移的大门。通过技术的变化,现在有可能像本文的案例一样在任何铁路或有轨电车系统实现故障(主要是裂缝)定位过程的优化。任何故障的所有数据储存在中央数据库,便于立即维复或者用于监控。RailSurf测量雪橇车是第一个移动和智能测量设备应用实例,通过采用下一代嵌入式解决方案,实现了快速、环保和具有成本效益的维护理念。

作者简介

Anders Norlin Frederiksen[anders.frederiksen@analog.com]于1994年获得丹麦技术大学荣誉电子工程学士学位(BScEE),并于1995-1997年间担任该大学的助理教授。他于1998年加入ADI公司马萨诸塞州诺伍德电力电子和控制部门,担任系统工程师一职。此后他曾在ADI担任过几个不同职务,目前职位是全球工业行销经理。

Marco Schmid[marco@schmid-engineering.ch]是瑞士Schmid Engineering公司的一名高级工程师。1993年获得系统科学工程技术硕士学位后开始从事DSP硬件和软件开发工作。自1997年以来,作为这家活跃的国际嵌入式系统解决方案提供商的领导者,他专注于研究基于微处理器的系统集成和高层次图形化系统设计。

1 2 3

关键词: Blackfin处理器 LabVIEW 铁轨

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版