基于TI DSP的数字化三相变频电源的研制

时间:2009-02-09来源:网络

  2.2 SPWM生成原理

  SPWM流程图如图6所示。在程序的初始化部分建立一个正弦表,在系统运行的时候可以通过查表的方式得到想要的数据。假设在一个正弦波周期内采样的次数为NX,则在第i个点的采样值为

基于TMS320F2812的数字化三相变频电源的研制

基于TMS320F2812的数字化三相变频电源的研制

  在实际使用中由于正弦表中的值要能被比较寄存器使用,所以不能出现负值,从上式可以看出当基于TMS320F2812的数字化三相变频电源的研制此时就不能正常使用了,因此可以把上面的公式改写为下面的形式:

基于TMS320F2812的数字化三相变频电源的研制

  其中PR为周期寄存器中的计数周期值。

  对yi取整,从i=1到i=NX,得到NX个正弦采样值的表格,设置通用定时器的计数方式为连续增减计数方式,在中断程序中调用表中的值即可产生相应的按正弦规律变化的方波信号。

  这里NX取180,载波比为3的整数倍(载波比=调制波频率/载波频率),这样可以使三相输出波形严格对称,减少谐波对输出电压波形的影响。

2.3 显示电路

  为了提高产品的人机交互性,系统中加了显示电路,经过比较,我们采用SPLC50lA液晶显示屏完成显示工作,显示电路与DSP2812连接框图如图7所示:

基于TMS320F2812的数字化三相变频电源的研制

  TMS320F2812对任何一个映射在XINTF区的外部器件进行读/写访问都可划分为三个阶段:建立阶段、激活阶段和跟踪阶段。这次设计中LCD映射到了XINTF0,默认情况下三个阶段的周期分别为6个XTIMCLK周期,14个XTIMCLK周期和6个XTIMCLK周期,如果将XTIMCLK的频率设置为SYSCLKOUT的l/2,则读/写周期的最大值为1 80ns。三个阶段的读写时序图如图8所示:

基于TMS320F2812的数字化三相变频电源的研制

  凌阳SPLC501液晶模块的使能信号CS的周期最小为166ns,时序图如图9所示。由前面分析可得,DSP的读写周期最大值为180ns,液晶模块的读写周期最小为166ns,DSP的读/写时序能满足该液晶模块的要求。

  3 创新点设计

  本系统设计采用交一直一交变频方式,系统整体结构运用模块化设计,将变频电源的各部分很好的结合在一起,实现变频输出;高精度显示电压、电流、频率、有功功率,所测信号数值为真有效值,电压输出精度高,误差小于5%,输出三相正弦波失真度小,并且具有过压、过流、缺相保护等功能,性能稳定,本系统设计的创新点在于:

基于TMS320F2812的数字化三相变频电源的研制

  1)结合TMS320LF2812芯片的AD单元,对三相变频电源的输出线电压、线电流进行采样,外扩随即存储器,通过SPLC50l液晶显示器显示电压、电流以及频率的值,可以实现自主采样和数据传输,大大提高数据采集效率,实时的显示变频电源的电压、电流的有效值,显示精度高,实时性好。

  2)结合TMS320F2812事件管理器EV单元,采用正弦脉宽调制(SPWM)技术,通过对SPWM程序进行设计和改进算法,可以有效的调节三相变频电源输出的频率和有效值,实时陛好,精度高。

  3)变频电源系统控制部分完全实现了数字化,控制精度更高,抗干扰能力强。

  4 测试结果

  根据设计要求,我们试制了样品,由示波器观察到的相电压和线电压波形(见图10~图13)可以看出,波形基本上没有失真,并且通过调节调制度和正弦波的频率可以改变输出电压的大小,达到了设计要求。

基于TMS320F2812的数字化三相变频电源的研制

  5 结论

  研制的数字化三相变频电源,经过两次试制,其间经过多次试验,并且对控制原理、电路结构等方面进行改进,现已逐步完善并经过考验,证明了本电源的有效性及可靠性。

1 2

关键词: 数字化 变频电源 TMS320F2812

加入微信
获取电子行业最新资讯
搜索微信公众号:EEPW

或用微信扫描左侧二维码

相关文章

查看电脑版